Browse > Article
http://dx.doi.org/10.15324/kjcls.2021.53.1.81

Association between PPARGC1A Genetic Polymorphisms and Type 2 Diabetes Mellitus in the Korean Population  

Jin, Hyun-Seok (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
Park, Sangwook (Department of Biomedical Laboratory Science, College of Health and Medical Science, Sangji University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.53, no.1, 2021 , pp. 81-87 More about this Journal
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide. T2DM is one of the most common types of diabetes and is caused by increased insulin resistance and reduced insulin secretion. Peroxisome proliferator-activated receptor γ coactivator 1 alpha (PPARGC1A) is a master modulator of mitochondrial biogenesis and of gluconeogenesis in liver. In this study, we analyzed genetic polymorphisms of PPARGC1A gene in a middle-aged Korean population with T2DM. Using the genotype data of 736 T2DM cases and 4544 healthy controls obtained from the Korean Association Resource (KARE), we analyzed genetic correlations between single nucleotide polymorphisms (SNPs) of PPARGC1A and T2DM. Fifteen SNPs of PPARGC1A demonstrated a statistically significant association with T2DM. Of these, rs10212638 exhibited the strongest correlation with T2DM (P-value=0.015, OR=1.29, CI=1.05~1.59), and the minor G allele of PPARGC1A increased the risk of T2DM. This is the first study to report a significant association between genetic polymorphisms in PPARGC1A and T2DM and suggests that SNPs of PPARGC1A display genetic correlations to the etiology of T2DM.
Keywords
Insulin; PPARGC1A; SNP; Type 2 diabetes mellitus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527-534. https://doi.org/10.1038/ng.357   DOI
2 Qiu L, Fan X, Zhang Y, Teng X, Miao Y. Molecular characterization, tissue expression and polymorphisms of buffalo PPARGC1A gene. Arch Anim Breed. 2020;63:249-259. https://doi.org/10.5194/aab-63-249-2020   DOI
3 Esterbauer H, Oberkofler H, Krempler F, Patsch W. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics. 1999;62:98-102. https://doi.org/10.1006/geno.1999.5977   DOI
4 Che HV, Metzger S, Portal E, Deyle C, Riess O, Nguyen HP. Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Mol Neurodegener. 2011;6:1. https://doi.org/10.1186/1750-1326-6-1   DOI
5 Salazar G, Cullen A, Huang J, Zhao Y, Serino A, Hilenski L, et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy. 2020;16:1092-1110. https://doi.org/10.1080/15548627.2019.1659612   DOI
6 Soyal S, Krempler F, Oberkofler H, Patsch W. PGC-1 alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia. 2006;49:1477-1488. https://doi.org/10.1007/s00125-006-0268-6   DOI
7 Zhu Li, Huang Q, Xie Z, Kang M, Ding H, Chen B, et al. PPARGC1A rs3736265 G>A polymorphism is associated with decreased risk of type 2 diabetes mellitus and fasting plasma glucose level. Oncotarget. 2017;8:37308-37320. https://doi.org/10.18632/oncotarget.16307   DOI
8 Park S, Kim BC, Kang S. Interaction effect of PGC-1α rs10517030 variants and energy intake in the risk of type 2 diabetes in middle-aged adults. Eur J Clin Nutr. 2017;71:1442-1448. https://doi.org/10.1038/ejcn   DOI
9 Totomoch-Serra A, Munoz ML, Burgueno J, Revilla-Monsalve MC, Diaz-Badillo A. Association of common polymorphisms in the VEGFA and SIRT1 genes with type 2 diabetes-related traits in Mexicans. Arch Med Sci. 2018;14:1361-1373. https://doi.org/10.5114/aoms.2018.74757   DOI
10 Cheema AK, Li T, Liuzzi JP, Zarini GG, Dorak MT, Huffman FG. Genetic associations of PPARGC1A with type 2 diabetes: differences among populations with African origins. J Diabetes Res. 2015;2015:921274. https://doi.org/10.1155/2015/921274   DOI
11 Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPAR γ). J Biol Chem. 1995;270:12953-12956. https://doi.org/10.1074/jbc.270.22.12953   DOI
12 Kim JH, Shin HD, Park BL, Cho YM, Kim SY, Lee HK, et al. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha promoter polymorphisms are associated with early-onset type 2 diabetes mellitus in the Korean population. Diabetologia. 2005;48:1323-1330. https://doi.org/10.1007/s00125-005-1793-4   DOI
13 Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:131-138. https://doi.org/10.1038/35093050   DOI
14 Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829-839. https://doi.org/10.1016/s0092-8674(00)81410-5   DOI
15 Clark J, Reddy S, Zheng K, Betensky RA, Simon DK. Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease. BMC Med Genet. 2011;12:69. https://doi.org/10.1186/1471-2350-12-69   DOI
16 Nadeau KJ, Anderson BJ, Berg EG, Chiang JL, Chou H, Copeland KC, et al. Youth-onset type 2 diabetes consensus report: current status, challenges, and priorities. Diabetes Care. 2016;39:1635-1642. https://doi.org/10.2337/dc16-1066   DOI
17 Shaw JE, Zimmet PZ, McCarty D, de Courten M. Type 2 diabetes worldwide according to the new classification and criteria. Diabetes Care. 2000;23:B5-10