• Title/Summary/Keyword: insulation structure

Search Result 515, Processing Time 0.023 seconds

Review of Insulation Performance in Synthetic Air and Dry Air for High Voltage Equipment in Distribution Class (배전급 전력설비를 위한 친환경 가스의 절연성능검토)

  • Lim, Dong-Young;Choi, Eun-Hyeok;Choi, Byoung-Ju;Choi, Sang-Tae;Lee, Kwang-Sik;Bae, Sungwoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.33-39
    • /
    • 2015
  • This paper examines the insulation performance of synthetic air and dry air. This examination was conducted based on dielectric strength in uniform and non-uniform field, electric field distribution by interior structure and defects in gas insulation switchgear (GIS) and insulation performance in different temperatures. From this review, it was found that eco-insulation gas required to possess low moisture content for power equipment in the distribution class. The results of this paper are valuable to ensure the insulation design and insulation reliability of GIS using air.

An Experimental Study on the Improvement Floor Impact Sound Insulation by Ceiling Structure in Apartment Houses (천장구조를 이용한 공동주택 바닥충격음 차단성능 개선에 관한 실험적 연구)

  • Baek, Eun-Sun
    • KIEAE Journal
    • /
    • v.7 no.1
    • /
    • pp.95-100
    • /
    • 2007
  • In apartment houses, said to be similar to a typical housing form, every household share the walls and floors. Many problems inevitably accompany such as an arrangement, as noise and vibration are shared among households. When investigating the percentage of apartment resident's dissatisfaction with housing environments, discontent due to noise ranks the highest. Among many different kinds of noises, noise such as floor crashing sounds show the highest indication rate in the residents' comparison of discontent. Therefore, it is the practice of insulating against noises such as floor crashing sounds that improves the apartment house environments. The factors influencing the floor impact sound insulation include floor finishing materials, shock absorbing floors (slabs included), and ceiling structures. The ceilings of the apartment houses, currently built in Korea, are set up with lower parts of slabs and paper finishing, or with double floors for protecting against floor impact sounds in order to improve the sound insulating performance. The most common the method of ceiling structure construction consists of 'wood boarded frames +Gypsum boards + ceiling papers', which is called the wood boarded frame method. This study aimed to measures and evaluates floor impact sound insulation by which the ceiling space are widened according to suppression system is added in apartment house ceiling structure.

Insulation Performance and Heating and Cooling Energy Consumption depending on the Window Reveal Depth in External Wall Insulation (외단열 벽체에서 창호 설치 위치에 따른 단열성능 및 냉난방 에너지 소비량)

  • Rhee, Kyu-Nam;Jung, Gun-Joo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.91-98
    • /
    • 2017
  • In this study, the effect of window installation position in the residential building with the external insulation was numerically investigated in terms of insulation performance and heating/cooling energy consumption. For different window positions, 2-D heat transfer simulation was conducted to deduce the linear thermal transmittance, which was inputted to the dynamic energy simulation in order to analyze heating/cooling energy consumption. Simulation results showed that the linear thermal transmittance ranges from 0.05 W/mK to 0.7 W/mK, and is reduced as the window is installed near the external finish line. Indoor surface temperature and TDR analysis showed that the condensation risk is the lowest when the window is installed at the middle of the insulation and wall structure. It was also found that the window installation near the external finish can reduce the annual heating/cooling energy consumption by 12~16%, compared with the window installation near the interior finish. Although the window installation near the external finish can achieve the lowest heating/cooling energy consumption, it might lead to increased condensation risks unless additional insulation is applied. Thus, it can be concluded that the window should be installed near the insulation-wall structure junction, in consideration of the overall performance including energy consumption, condensation prevention and constructability.

A Study on Dielectric Strength and Insulation Property of High Voltage Switchgear Applied Dry Air Gas (Dry Air Gas를 적용한 초고압 Switchgear 절연특성연구)

  • Jeong, D.H.;Chung, Y.H.;Seo, K.B.;Kim, T.H.;Kim, J.B.;Lee, H.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1731-1737
    • /
    • 2008
  • This paper present the fundamental insulation characteristics of Dry Air gas and insulation coating in high voltage power apparatus. It is known that the dielectric strength. of Dry Air is approximately one-third that of SF6 gas. we attempt that the insulation coating and dry air gas have replaced the SF6 gas as insulation of the switchgear. We proposed the dry air insulated switchgear(DAIS) for High Voltage apparatus. To acquire technology of insulation characteristic improvement made standards for complex insulation structure and conducted simulations and experiments

(A)Study on Apartment Insulation Status and Insulation reinforcement Application (공동주택의 단열현황 조사 및 단열보강 적용방안에 관한 연구)

  • Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.226-227
    • /
    • 2015
  • This research is to measure and analyze the thermal performance of the apartment structure and to evaluate and establish standards of thermal insulation defect in order to make the basic data necessary for determining the degree of the thermal performance degradation and for repairing and reinforcing the exterior wall of the existing apartment. The following conclusions could be derived thorough the investigation of outer wall temperature distribution and the insulation assesment experiments using a model of specimens for the apartment houses' outer walls. It was confirmed that for the thermal performance through the insulating material thicknesses 5cm, 8cm in walls, the thermal insulation thickened by 3cm, from 5cm to 8cm, but that the actual temperature difference reached only about 1 ~ 2℃. This implies that the thermal performance improvement using the thermal insulation in walls is not significant and that it is difficult to insulate the thermal bridge area.

  • PDF

A Study on the Temperature Change of Green House using Aerogel (에어로젤을 사용한 시설하우스의 온도 변화에 대한 연구)

  • Yang, Ji-Ung;Lee, Eun-Suk;Ko, Joon-Young;Kim, Won-Kyung;Byun, Jae-Young;Park, Jin-Gyu;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1067-1074
    • /
    • 2020
  • Green houses provide a more conditioned and warmer environment than the outside environment due to insulation. Currently used insulation materials include soft film (PVC, PE, EVA), foamed PE sheet, non-woven fabric, reflective film, and multi-layer insulation curtain, but there are many disadvantages and to compensate for this, silica aerogel insulation material with excellent warmth, light weight, and small volume Research using is in progress. In this study, the temperature change of the quadruple-structure green house and the temperature change in the dual-structure green house of soft film and silica airgel were investigated. The daytime temperature change was highest in A and A2 (soft film) at 10 to 16:00 after sunrise, but showed the lowest temperature at 17 to 18:00, which is the sunset time, showing the greatest change. The airgels of D and D2 showed the smallest change in temperature after sunrise and right after sunset. That is, it can be said that the airgel is hardly affected by external temperature. The temperature change at night was highest in D and D2 (aerogel) for both quadruple and dual structures. The temperature at night was measured higher in the quadruple structure than in the double structure. As for the ratio of the internal temperature to the external temperature for the quadruple structure and the double structure, D (aerogel) was not affected by the external temperature during the day in the quadruple structure and the double structure. D (Aerogel) seems to be able to reduce the damage caused by high temperatures in summer due to the high thermal insulation effect of the airgel, as the temperature rises above 4℃ at night. And in winter, it helps to save heating costs due to less heat emitted to the outside.

Sound Insulation Performance of the Layered Structure of the Next Generation High Speed Train (차세대 고속철도 차량 적층 구조의 차음성능)

  • Lee, Jung-Hyeok;Kim, Seock-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.326-331
    • /
    • 2011
  • Aluminum extruded panel used in a high speed train shows high stiffness, however, its sound insulation performance is remarkably decreased by local resonance phenomena. In this paper, improvement strategy of the sound insulation performance is proposed for the floor extruded panel used in HEMU-400x, 400km/h class next generation high speed train under development, and the improvement effect is verified by experiment. Aluminum extruded panel specimen for the floor is manufactured and urethane foam is installed in the core of the panel. Based on ASTM E2249-02, intensity transmission loss is measured and the improvement effect in local resonance frequency band is verified. Finally, improvement effect of the sound insulation performance is estimated on the layered floor structure including the foamed aluminum panel.

  • PDF

Design of Aluminium Extruded Panel for Sound Insulation (알미늄 압출재의 차음 구조 설계)

  • Seo, Tae-Gun;Kim, Seock-Hyun;Kim, Jeong-Tae;Song, Dal-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.996-999
    • /
    • 2010
  • Aluminium extruded panel is the most important element for sound insulation in a express train. However, comparing with the flat plate with the same weight, the extruded panel shows remarkably low sound transmission loss above the 1st local resonance frequency, which is determined by the dimension of the core structure. Preceding study showed the possibility of the improvement of sound insulation performance by properly designing the core dimension. By the proper core design, local resonance frequency shifts to higher frequency region without any reduction of bending or torsional strength and without any weight increase. Based upon this result, this study investigates in detail the design modification of the core structure of the aluminium extruded panel used in a express train under development, in aspect of sound insulation. Design result is compared with those of other developed models.

  • PDF

A Study on the Sound Insulation Performance of Steel-Structured Apartment Buildings (I) (철골조 공동주택의 차음성능 실태조사에 관한 연구 (I))

  • Cha, Sang-Gon;Lee, Sang-Woo;Jung, Byung-Wook;Jeong, Dae-Up;Lee, Soo-Yeul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.151-156
    • /
    • 2000
  • The sound insulation performance of walls and floors for air-borne and structure-borne sounds in an apartment building is an important environmental factor which should be contemplated at the intial design stage for their thorough control. Recent increasing residents' demands for quality living spaces strongly urge the development of more accurate and efficient measurement and evaluation methods for the control of air-borne and structure-borne sound insulation. However, steel-structured apartment buildings, recently emerged as new building structures in the market, have not been thoroughly examined. The present work carried out an extensive survey for steel-structured apartment buildings, in an attempt to provide useful design data, and their sound insulation performances were compared with those of R.C. apartment buildings.

  • PDF

Experimental Study of Floor Impact Sound Insulation by the Finishing Materials and Porous Ratio of Insulations of Floor Structure in Mock-up Test Room (모형실험실에서 바닥충격음 완충재의 발포율 및 바닥마감재의 변화에 따른 충격음 차단성능에 대한 실험적 연구)

  • 김태희;오진균;신일섭;조창근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.756-759
    • /
    • 2003
  • It is increasing the interest on the comfortable dwelling environment and the efforts to solve the problem of the floor impact noise in apartment houses have been realized, as a result numerous products have been made. The purpose of this study is to investigate the sound insulation performances according to foaming rate of floor impact noise insulators and flooring coverings in Mock-up Test Room. The test results of impact insulation performance for each floor impact noise insulators is that double structure of insulator is excel than one in low-middle frequency band and as foaming rate go up, the sound insulation performance is improved.

  • PDF