• Title/Summary/Keyword: instrument and equipment

Search Result 217, Processing Time 0.025 seconds

Development of Head-cook's Education and Training Curriculum by Analyzing Job Characteristics and Competencies in Contract Foodservice Management Company

  • Cha, Jin-A;Park, Moon-Kyung;Shin, Jeong-Hoon;Yang, Il-Sun
    • Nutritional Sciences
    • /
    • v.9 no.2
    • /
    • pp.131-138
    • /
    • 2006
  • The primary purpose of this study was to investigate the job characteristics and competencies of a head-cook in contracted foodservice management company, identify the knowledge, abilities, skills and other characteristics (KASO) required to perform the duties of a head-cook, and provide training content and develop training program for job of head-cook in contract foodservice management company (CFMC). A survey instrument including identified KASO was used in the study. The questionnaire was delivered by using e-mail to 165 head-cooks employed by CFMC. The factor analysis resulted in a three-factor structure of the instrument such as 'basic foodservice operation duties' 'personal characteristics' 'managing of expanded duties-menu, customer and business'. This result suggested the education and training program for head-cook in CFMC should be composed of 'basic foodservice operation duties' on 'bulk preparation', 'procurement, inventory management', 'facility and equipment management', and 'sanitation and safety management', 'personal characteristics' on 'personality management' and 'moral duties', and 'managing of expanded duties-menu, customer and business' on 'menu management', 'customer service management', 'cost management', and 'administrative ability'. Therefore, it will be expected that the management of human resources in the contract foodservice industry would be developed by the application of recommended education and training program.

Restoration of Excavated Earthenware in Seo Chun Oh Suk-li Site, Korea (서천 오석리유적 출토 토기복원)

  • Chung, Kwang-yong;Kang, Tae-chun;Lim, Se-jin
    • 보존과학연구
    • /
    • s.28
    • /
    • pp.105-119
    • /
    • 2007
  • Restoration of earthenware is largely composed of selection of clay, making(forming), and firing. This study lays emphasis on the making method and open-air firing. For making methods, This study used coiling method partly with priority given to ring method. The most significant feature of this restoration work is the making method of tap-forming, in which 외박자(out tap instrument) and 내박자(inter tap instrument) would be tapped and formed. For firing, This study used open-air firing method in the most primitive way. This method needs no special device and equipment and makes the work more simple and easy. The previous study was on the making method by archeological and preservation-scientific research but this study emphasized the restoration work in an actual earthenware maker's position. Through the result of this study, This study wish this would be an opportunity to present another model of various restoration methods for other researchers those who wanted to participate in the restoration and openair firing.

  • PDF

A Study on the Improvement of Performance Testing System of Domestic Surveying Equipment (국내 측량장비 성능검사제도 개선방안 연구)

  • MIN, Kwan-Sik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • In this paper, we proposed the improvements for performance test and surveying equipment regulations, standards, methods and procedures, depending on the need of improving the legal system for surveying equipment in a diverse and sophisticated surveying industry. This research was performed first investigating the existing legal systems(Act on the establishment and management of spatial data, Framework act on national standards, ISO 17123, JIS B 7912) with respect to the surveying equipment performance testing and the research for IOS and KOLAS suggested the improvements on the application for the surveying equipment performance testing standard. More exactly, first, two years were presented for the surveying equipment performance testing cycle considering the precise accuracy of the instrument stability, purpose and frequency of use, etc. Second, the abolition of the measurement distance by grade and the upward or cross-grade adjustment of the single prism standards about the light wave rangefinder and total station were suggested for the improvement on survey equipment performance criteria. Third, since the main function of total station is focused on a three-dimensional coordinate measurement due to the improvement of surveying equipment performance testing, it was proposed to use the precision(repeatability) of the coordinate measuring method as an evaluation method.

Study on the Alternating Flow Hydraulics and Its New Potential Application in the Geotechnical Testing Field

  • Sang, Yong;Han, Ying;Duan, Fuhai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.245-255
    • /
    • 2016
  • The alternating flow hydraulics (AFH) had demonstrated the unique features in the past. One of the most well-known inventions was the hydraulic machine-gun synchronizer, which had become the standard equipment of airplane during World War I. The studies on the AFH between 1960 and 1980 had trigged many researchers' interests and reached the summit. The disadvantages of the AFH like low efficiency and cooling difficulty had prevented the further development. Few people are engaged in studying the AFH at present. However, the unique characteristics of the AFH inspire the researchers to continuously explore the new special suitable applications. The overviews of the AFH and the new potential application in the geotechnical testing field have been discussed in this paper. First, the research results of the AFH in the past have been summarized. Then, the classifications of the AFH have been introduced in detail according to the working principle, the number of hydraulic transmission pipelines and the mode of input energy. The advantages and the disadvantages of the AFH have been discussed. A novel potential suitable application in the soil test field has been presented at last. The detailed designing ideas of a new dynamic trixial instrument have been given, which will be a more innovational and energy-saving plan according to the current studies. A series of simulation experiments have been done. The simulation results show that the proposed scheme for the new dynamic trixial instrument is feasible. The paper work will also give some inspirations in the reciprocating motion control system.

An AC Impedance Spectrum Measurement Device for the Battery Module to Predict the Remaining Useful Life of the Lithium-Ion Batteries (리튬배터리의 잔여 유효 수명 추정을 위한 배터리 모듈용 AC 임피던스 스펙트럼 측정장치)

  • Lee, Seung-June;Farhan, Farooq;Khan, Asad;Cho, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.251-260
    • /
    • 2020
  • A growing interest has emerged in recycling used automobile batteries into energy storage systems (ESSs) to prevent their harmful effects to the environment from improper disposal and to recycle such resources. To transform used batteries into ESSs, composing battery modules with similar performance by grading them is crucial. Imbalance among battery modules degrades the performance of an entire system. Thus, the selection of modules with similar performance and remaining life is the first prerequisite in the reuse of used batteries. In this study, we develop an instrument to measure the impedance spectrum of a battery module to predict the useful remaining life of the used battery. The developed hardware and software are used to apply the AC perturbation to the used battery module and measure its impedance spectrum. The developed instrument can measure the impedance spectrum of the battery module from 0.1 Hz to 1 kHz and calculate the equivalent circuit parameters through curve fitting. The performance of the developed instrument is verified by comparing the measured impedance spectra with those obtained by a commercial equipment.

Performance Evaluation of Measuring Instrument for Infra-Red Signature Suppression System Model Test (적외선 신호저감 장치 모형시험을 위한 계측기의 성능평가)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2023
  • Modern naval ships install an Infra-Red Signature Suppression system (IRSS) in their exhaust pipe to reduce infrared signature emitted to the outside. In addition, naval ships are strategic assets with a very long life cycle, so high reliability of the performance of the equipment on board must be guaranteed. Therefore, equipment such as IRSS is evaluated for performance through model testing at the design stage. A variety of measuring instruments are used in IRSS model testing, and the reliability of these instruments must also be guaranteed. In this paper, a study was conducted to evaluate the reliability of measurement equipment used in IRSS model testing. The test equipment and instruments used were a hot gas wind tunnel, pitot tube, digital differential pressure gauge, thermocouple sensor, and digital recorder. As the fan speed of the hot gas wind tunnel increased, the measurement deviation of the flow decreased, and the temperature output of the thermocouple sensor showed differences in response time and stability depending on the method used.

Analysis of instrument exercise using IMU about symmetry

  • Yohan Song;Hyun-Bin Zi;Jihyeon Kim;Hyangshin Ryu;Jaehyo Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.296-305
    • /
    • 2023
  • The purpose of this study is to measure and compare the balance of motion between the left and right using a wearable sensor during upper limb exercise using an exercise equipment. Eight participants were asked to perform upper limb exercise using exercise equipment, and exercise data were measured through IMU sensors attached to both wrists. As a result of the PCA test, Euler Yaw(Left: 0.65, Right: 0.75), Roll(Left: 0.72, Right: 0.58), and Gyro X(Left: 0.64, Right: 0.63) were identified as the main components in the Butterfly exercise, and Euler Pitch(Left: 0.70, Right 0.70) and Gyro Z(Left: 0.70, Right: 0.71) were identified as the main components in the Lat pull down exercise. As a result of the Paired-T test of the Euler value, Yaw's Peak to Peak at Butterfly exercise and Roll's Mean, Yaw's Mean and Period at Lat pull down exercise were smaller than the significance level of 0.05, proving meaningful difference was found. In the Symmetry Index and Symmetry Ratio analysis, 89% of the subjects showed a tendency of dominant limb maintaining relatively higher angular movement performance then non-dominant limb as the Butterfly exercise proceeds. 62.5% of the subjects showed the same tendency during the Lat pull down exercise. These experimental results indicate that meaningful difference at balance of motion was found according to an increase in number of exercise trials.

Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926 (ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발)

  • Jeon, Youngjun;Kim, Byung Chul;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.

A Study on the Design and Implementation of EGSE for Digital Satellite Communication (디지털위성중계기용 성능입증장치의 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.503-508
    • /
    • 2018
  • This study describes the design and implementation of EGSE for Digital Satellite Communication. The EGSE is a equipment that evaluates digital satellite communication and requires precise and accurate measurement. EGSE consists of a PLDIU and IIU(Instrument Interface Unit), Up/Down converter for SHF band, Modems to verify the Digital Satellite Communication. The EGSE was used for performance verification and space environment test such as thermal vacuum after developing digital satellite communication.

A Study on the Implementation and Design of EGSE for Dehop/Rehop Transponder (대전자전 중계기용 성능 입증 장치의 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Kim, Bong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.147-152
    • /
    • 2022
  • This study describes the design and implementation of EGSE for Dehop/Rehop Transponder. The EGSE is a equipment that evaluates Dehop/Rehop Transponder and requires precise and accurate measurement. EGSE consists of a PLDIU and IIU(Instrument Interface Unit), Up/Down converter for L band, Modems to verify the Dehop/Rehop Transponder. The EGSE was used for performance verification and space environment test such as thermal vacuum after developing Dehop/Rehop Transponder.