• 제목/요약/키워드: instance segmentation

검색결과 73건 처리시간 0.028초

영상장비와 딥러닝을 이용한 고속도로 터널 균열 탐지 시스템 개발 (Development of Crack Detection System for Highway Tunnels using Imaging Device and Deep Learning)

  • 김병현;조수진;채홍제;김홍기;강종하
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권4호
    • /
    • pp.65-74
    • /
    • 2021
  • 빠르게 증가하는 노후 터널을 효율적으로 관리하기 위하여 최근 영상장비를 이용한 점검 방법론들이 많이 제안되고 있다. 하지만 기존의 방법론들은 대부분 국한된 영역에서 검증을 수행하였을 뿐 아니라, 다른 물체들이 존재하지 않는 깨끗한 콘크리트 표면에서 검증되어 실제 현장에 대한 적용성을 검증하기 어려웠다. 따라서 본 논문에서는 이러한 한계를 극복하기 위하여 비균열 물체 학습에 기반한 6단계 터널 균열 탐지 딥러닝 모델 개발 프레임워크를 제안한다. 제안된 프레임워크는 터널에서 취득된 이미지 내 균열 탐색, 픽셀 단위 균열 라벨링, 딥러닝 모델 학습, 비균열 물체 수집, 비균열 물체 재학습, 최종 학습 데이터 구축의 총 6단계로 이루어진다. 제안된 프레임워크를 이용하여 개발된 균열 탐지 딥러닝 모델 개발을 수행하였으며, 일반 균열 1561장, 비균열 206장으로 개별 물체 세분화(Instance Segmentation) 모델인 Cascade Mask R-CNN을 학습시켰다. 학습된 모델의 현장 적용성을 검토하기 위하여 전선, 전등 등을 포함하는 약 200m 길이의 실제 터널에서 균열 탐지를 수행하였다. 실험 결과 학습된 모델은 99% 정밀도와 92%의 재현율을 나타내며 뛰어난 현장 적용성을 나타내었다.

New Seed Detection by Shape Analysis for Construction of Vascular Structures

  • Shim, Hack-Joon;Lee, Hyun-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권6호
    • /
    • pp.427-433
    • /
    • 2010
  • Although tracking methods are efficient and popular for vessel segmentation, they require a seed to initiate an instance of tracking. In this paper, a new method to detect new seeds for tracking of arterial segments from CT angiography (CTA) and to construct a vascular structure is proposed. The proposed algorithm is based on shape analysis of connected components in a volume of interest around a vessel segment which was already extracted by tracking. The eigenvalues of the covariance matrix are used as the shape features for detection. The experimental results on actual clinical data showed that the results totally revealed the arterial tree not hindered by bone or veins. In visual comparison to a method which combines registration and subtraction of both pre-contrast and post-contrast CT volumes, the proposed method produced comparable results to the reference method and were confirmed of its feasibility for clinical use of reducing the cost and burden of patients.

-건설현장에서의 시공 자동화를 위한 Laser Sensor기반의 Workspace Modeling 방법에 관한 연구- (Human Assisted Fitting and Matching Primitive Objects to Sparse Point Clouds for Rapid Workspace Modeling in Construction Automation)

  • 권순욱
    • 한국건설관리학회논문집
    • /
    • 제5권5호
    • /
    • pp.151-162
    • /
    • 2004
  • Current methods for construction site modeling employ large, expensive laser range scanners that produce dense range point clouds of a scene from different perspectives. Days of skilled interpretation and of automatic segmentation may be required to convert the clouds to a finished CAD model. The dynamic nature of the construction environment requires that a real-time local area modeling system be capable of handling a rapidly changing and uncertain work environment. However, in practice, large, simple, and reasonably accurate embodying volumes are adequate feedback to an operator who, for instance, is attempting to place materials in the midst of obstacles with an occluded view. For real-time obstacle avoidance and automated equipment control functions, such volumes also facilitate computational tractability. In this research, a human operator's ability to quickly evaluate and associate objects in a scene is exploited. The operator directs a laser range finder mounted on a pan and tilt unit to collect range points on objects throughout the workspace. These groups of points form sparse range point clouds. These sparse clouds are then used to create geometric primitives for visualization and modeling purposes. Experimental results indicate that these models can be created rapidly and with sufficient accuracy for automated obstacle avoidance and equipment control functions.

건설 인공지능 개발사례로 보는 전공교육 인력의 중요성 (The Importance of Manpower in Major Education as an Example of Artificial Intelligence Development in Construction)

  • 허석재;이상현;이성원;김명훈;정란
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.223-224
    • /
    • 2021
  • The process before the model learning stage in AI R&D can be subdivided into data collection/cleansing-data purification-data labeling. After that, according to the purpose of development, it goes through a stage of verifying the model by performing learning by using the algorithm of the artificial intelligence model. Several studies describe an important part of AI research as the learning stage, and try to increase the accuracy by changing the structure and layer of the AI model. However, if the refinement and labeling process of the learning data is tailored only to the model format and is not made for the purpose of development, the desired AI model cannot be obtained. The latest research reveals that most AI research failures are the failure of the learning data rather than the structure of the AI model. analyzed.

  • PDF

인공지능 개발방식에 따른 건설 분야 인공지능 개발사례 (Cases of Artificial Intelligence Development in the Construction field According to the Artificial Intelligence Development Method)

  • 허석재;정란
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.217-218
    • /
    • 2021
  • The development of artificial intelligence in the field of construction and construction is revitalizing. The performance and development techniques of artificial intelligence are changing rapidly, but if you look at the cases of domestic construction sites, they are using technologies from 5 to 7 years ago. It is right to follow a stable method in consideration of commercialization, but the previous AI development method requires more manpower and time to develop than the current technology. In addition, in order to actively utilize artificial intelligence technology, customized artificial intelligence is required to be applied to ever-changing changes in construction sites. it is the reality As a result, even if good AI technology is secured at the construction site, it is reluctant to introduce it because there is no advantage in terms of time and cost compared to the existing method to apply it only to some processes. Currently, an AI technique with a faster development process and accurate recognition has been developed to cope with a fluid situation, so it will be important to understand and introduce the rapidly changing AI development method.

  • PDF

YOLACT를 이용한 스티칭 속도 개선 방안 (Stitching speed improvement method using YOLACT)

  • 고성영;이성배;박성환;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.10-13
    • /
    • 2020
  • 최근 초고화질 영상, 가상현실 등 프리미엄 콘텐츠에 대한 요구가 커지면서 360° VR과 8K TV 등의 시장이 확대되고 있다. 360° VR 영상을 만드는 데에 스티칭 기술이 사용되고 있고, 8K 영상을 촬영할 수 있는 장비는 매우 제한적이기 때문에 스티칭 기술을 통해 콘텐츠를 확보하려는 노력이 이어지고 있다. 스티칭 기술은 여러 영상을 합성하여 기존 카메라의 좁은 시야각 문제를 해결하고 보다 넓은 시야각의 영상을 만드는 기술이다. 최근에는 해당 분야에 관한 연구가 진행됨에 따라 이미지를 넘어 동영상 스티칭에 대한 연구가 주로 진행되고 있다, 기존 동영상 스티칭 방식은 이미지 스티칭 방식을 프레임마다 반복하기 때문에 시간이 오래 걸린다는 단점이 있다. 컴퓨터 비전 분야에서는 딥러닝을 활용하여 객체가 존재할 것으로 예측되는 부분에 사각형 모양의 경계 상자(Bounding box)를 생성하는 객체 탐지(Object detection) 분야에 관한 많은 연구가 이루어져 왔고 이를 기반으로 객체의 경계선을 검출하여 해당 영역만을 구분하는 객체 분할(Instance segmentation)에 대한 연구 또한 진행 중이다. 본 논문에서는 앞서 말한 스티칭 속도 문제를 해결하기 위하여 빠른 속도로 객체 분할이 가능한 YOLACT를 이용하여 스티칭 속도를 개선하는 방안을 제안한다.

  • PDF

압축센싱이 Mask R-CNN 기반의 객체검출에 미치는 영향 분석 (Analysis of the Effect of Compressed Sensing on Mask R-CNN Based Object Detection)

  • 문한솔;권혜민;이창교;서정욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.97-99
    • /
    • 2022
  • 산업과 기술력이 발전하면서 이에 대한 데이터의 양도 증폭하고 있으며 해당 기술력과 정보 전달에 대한 연구가 활발히 진행되고 있다. 따라서 본 논문에서는 데이터의 양을 줄이기 위해서 압축센싱을 활용하였고 해당 데이터가 객체 검출 알고리즘인 Mask R-CNN 모델에 미치는 영향을 분석하였다. 압축률이 높아질수록 이미지의 데이터 양이 줄어들면서 해상도가 낮아지는 것을 확인할 수 있었지만 객체 검출에서는 원본과 큰 차이를 보이지 않고 대부분의 객체가 검출되는 것을 확인하였다.

  • PDF

이미지 기반 건설현장 수치 측정 모델 기초연구 (Preliminary Study for Image-Based Measurement Model in a Construction Site)

  • 윤세빈;강민균;김창원;임현수;유위성;김태훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.287-288
    • /
    • 2023
  • The inspection work at construction sites is one of the important supervisory tasks, which involves verifying that the building is being constructed by the numerical values specified in the design drawings. The conventional measuring method for inspection involves using tools or equipment such as rulers directly by the personnel at the site, and it is usually confirmed by vision. Therefore, this study proposes an model to measure numerical values on images of the construction site. Through the case study to measure the installation interval of jack supports, the proposed algorithm was verified the effiect and validity. The results of this study suggest that it can support inspection work even in the office, which may have been overlooked by on-site inspectors, and contribute to the digitization of inspection work at construction sites.

  • PDF

딥러닝 기반 농경지 속성분류를 위한 TIF 이미지와 ECW 이미지 간 정확도 비교 연구 (A Study on the Attributes Classification of Agricultural Land Based on Deep Learning Comparison of Accuracy between TIF Image and ECW Image)

  • 김지영;위성승
    • 한국농공학회논문집
    • /
    • 제65권6호
    • /
    • pp.15-22
    • /
    • 2023
  • In this study, We conduct a comparative study of deep learning-based classification of agricultural field attributes using Tagged Image File (TIF) and Enhanced Compression Wavelet (ECW) images. The goal is to interpret and classify the attributes of agricultural fields by analyzing the differences between these two image formats. "FarmMap," initiated by the Ministry of Agriculture, Food and Rural Affairs in 2014, serves as the first digital map of agricultural land in South Korea. It comprises attributes such as paddy, field, orchard, agricultural facility and ginseng cultivation areas. For the purpose of comparing deep learning-based agricultural attribute classification, we consider the location and class information of objects, as well as the attribute information of FarmMap. We utilize the ResNet-50 instance segmentation model, which is suitable for this task, to conduct simulated experiments. The comparison of agricultural attribute classification between the two images is measured in terms of accuracy. The experimental results indicate that the accuracy of TIF images is 90.44%, while that of ECW images is 91.72%. The ECW image model demonstrates approximately 1.28% higher accuracy. However, statistical validation, specifically Wilcoxon rank-sum tests, did not reveal a significant difference in accuracy between the two images.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.