DOI QR코드

DOI QR Code

Development of Crack Detection System for Highway Tunnels using Imaging Device and Deep Learning

영상장비와 딥러닝을 이용한 고속도로 터널 균열 탐지 시스템 개발

  • 김병현 (서울시립대학교 토목공학과) ;
  • 조수진 (서울시립대학교 토목공학과) ;
  • 채홍제 (한국도로공사 구조물처) ;
  • 김홍기 (한국도로공사 수원지사) ;
  • 강종하 ((주)아와소프트)
  • Received : 2021.05.22
  • Accepted : 2021.08.27
  • Published : 2021.08.30

Abstract

In order to efficiently inspect rapidly increasing old tunnels in many well-developed countries, many inspection methodologies have been proposed using imaging equipment and image processing. However, most of the existing methodologies evaluated their performance on a clean concrete surface with a limited area where other objects do not exist. Therefore, this paper proposes a 6-step framework for tunnel crack detection deep learning model development. The proposed method is mainly based on negative sample (non-crack object) training and Cascade Mask R-CNN. The proposed framework consists of six steps: searching for cracks in images captured from real tunnels, labeling cracks in pixel level, training a deep learning model, collecting non-crack objects, retraining the deep learning model with the collected non-crack objects, and constructing final training dataset. To implement the proposed framework, Cascade Mask R-CNN, an instance segmentation model, was trained with 1561 general crack images and 206 non-crack images. In order to examine the applicability of the trained model to the real-world tunnel crack detection, field testing is conducted on tunnel spans with a length of about 200m where electric wires and lights are prevalent. In the experimental result, the trained model showed 99% precision and 92% recall, which shows the excellent field applicability of the proposed framework.

빠르게 증가하는 노후 터널을 효율적으로 관리하기 위하여 최근 영상장비를 이용한 점검 방법론들이 많이 제안되고 있다. 하지만 기존의 방법론들은 대부분 국한된 영역에서 검증을 수행하였을 뿐 아니라, 다른 물체들이 존재하지 않는 깨끗한 콘크리트 표면에서 검증되어 실제 현장에 대한 적용성을 검증하기 어려웠다. 따라서 본 논문에서는 이러한 한계를 극복하기 위하여 비균열 물체 학습에 기반한 6단계 터널 균열 탐지 딥러닝 모델 개발 프레임워크를 제안한다. 제안된 프레임워크는 터널에서 취득된 이미지 내 균열 탐색, 픽셀 단위 균열 라벨링, 딥러닝 모델 학습, 비균열 물체 수집, 비균열 물체 재학습, 최종 학습 데이터 구축의 총 6단계로 이루어진다. 제안된 프레임워크를 이용하여 개발된 균열 탐지 딥러닝 모델 개발을 수행하였으며, 일반 균열 1561장, 비균열 206장으로 개별 물체 세분화(Instance Segmentation) 모델인 Cascade Mask R-CNN을 학습시켰다. 학습된 모델의 현장 적용성을 검토하기 위하여 전선, 전등 등을 포함하는 약 200m 길이의 실제 터널에서 균열 탐지를 수행하였다. 실험 결과 학습된 모델은 99% 정밀도와 92%의 재현율을 나타내며 뛰어난 현장 적용성을 나타내었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호21CTAP-C163726-01).

References

  1. Sanpei, T., and Mizoguchi, T. (2018), Fundamental Study for Real-Time Detection of Sudden Displacement by High-Speed Laser Scanner, Journal of Structural Integrity and Maintenance, 3(4), 227-232. https://doi.org/10.1080/24705314.2018.1536508
  2. Yamaguchi, T., Nakamura, S., Saegusa, R., and Hashimoto, S. (2008), Image-Based Crack Detection for Real Concrete Surfaces, IEEJ Transactions on Electrical and Electronic Engineering, Wiley Online Library, 3(1), 128-135. https://doi.org/10.1002/tee.20244
  3. Yu, S. N., Jang, J. H., and Han, C. S. (2007), Auto Inspection System Using a Mobile Robot for Detecting Concrete Cracks in a Tunnel, Automation in Construction, Elsevier, 16(3), 255-261. https://doi.org/10.1016/j.autcon.2006.05.003
  4. Lee, S. H., Shin, K. J., Kim, H. J., Kim, S. Y., Yoo, C. H., and Eom S. G. (2019), Introduction of Tunnel Crack Measurement Technology Using Image Scanning, Journal of Korean Society of Steel Construction, 31(6), 42-48.
  5. Song, Q., Wu, Y., Xin, X., Yang, L., Yang, M., Chen, H., Liu, C., HU, M., CHAI, X., and Li, J. (2019), Real-time Tunnel Crack Analysis System via Deep Learning. IEEE Access, IEEE, 7, 64186-64197. https://doi.org/10.1109/access.2019.2916330
  6. Li, G., Ma, B., He, S., Ren, X., and Liu, Q. (2020), Automatic Tunnel Crack Detection based on U-Net and a Convolutional Neural Network with Alternately Updated Clique. Sensors, MDPI, 20(3), 717. https://doi.org/10.3390/s20030717
  7. Ronneberger, O., Fischer, P., and Brox, T. (2015), U-net: Convolutional Networks for Biomedical Image Segmentation, International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Berlin, 234-241.
  8. Choi, Y., Kim, J., Cho, H., and Lee, C. (2019) Asphalt Concrete Pavement Surface Crack Detection using Convolutional Neural Network, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(6), 38-44.
  9. Kim B., and Cho, S. (2019), Image-based Concrete Crack Assessment using Mask and Region-based Convolutional Neural Network, Structural Control and Health Monitoring, Wiley, 26(8), e2381(1-15). https://doi.org/10.1002/stc.2381
  10. Kim B., and Cho, S. (2020), Automated Multiple Concrete Damage Detection Using Instance Segmentation Deep Learning Model, Applied Sciences, MDPI, 9(20), 4444(1-14). https://doi.org/10.3390/app9204444
  11. Jang, K., An, Y.-K., Kim, S., and Cho, S. (2021) Automated Crack Evaluation of a High-Rise Bridge Pier Using a Ring-Type Climbing Robot, Computer-aided Civil and Infrastructure Engineering, Wiley, 26, 14-29. https://doi.org/10.1111/mice.12550
  12. He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017), Mask r-cnn. Proceedings of the IEEE international conference on computer vision, IEEE, 2961-2969.
  13. Cai, Z., and Vasconcelos, N. (2018), Cascade r-cnn: Delving into High Quality Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Piscataway, 6154-6162.
  14. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., and Zitnick, C. L. (2014), Microsoft Coco: Common Objects in Context, European Conference on Computer Vision, Springer, Berlin, 740-755.
  15. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. (2019), MMDetection: Open Mmlab Detection Toolbox and Benchmark, ArXiv Preprint, ArXiv, 1906.07155.
  16. Robbins, H., and Monro, S. (1951), A Stochastic Approximation Method, The Annals of Mathematical Statistics, Institute of Mathematical Statistics, 400-407.
  17. Pascanu, R., Mikolov, T., and Bengio, Y. (2013), On the Difficulty of Training Recurrent Neural Networks, International Conference on Machine Learning, PMLR, 1310-1318.
  18. Loshchilov, I., and Hutter, F. (2016), SGDR: Stochastic Gradient Descent with Warm Restarts, ArXiv Preprint, arXiv, 1608.03983.
  19. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009). Imagenet: A Large-Scale Hierarchical Image Database, 2009 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Piscataway, 248-255.
  20. Xie, S., Girshick, R., Dollar, P., Tu, Z., and He, K. (2017), Aggregated Residual Transformations for Deep Neural Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Piscataway, 1492-1500.