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Abstract

Although tracking methods are efficient and popular for vessel segmentation, they require a seed to initiate an instance of tracking. In this 
paper, a new method to detect new seeds for tracking of arterial segments from CT angiography (CTA) and to construct a vascular structure 
is proposed. The proposed algorithm is based on shape analysis of connected components in a volume of interest around a vessel segment 
which was already extracted by tracking. The eigenvalues of the covariance matrix are used as the shape features for detection. The 
experimental results on actual clinical data showed that the results totally revealed the arterial tree not hindered by bone or veins. In visual 
comparison to a method which combines registration and subtraction of both pre-contrast and post-contrast CT volumes, the proposed 
method produced comparable results to the reference method and were confirmed of its feasibility for clinical use of reducing the cost and 
burden of patients.

Key words : CT angiography, tracking, seed detection, shape analysis

Q

Corresponding Author : Hackjoon Shim
School of Electrical Engineering, Automation and Systems Research 
Institute (ASRI) BK21 Research Division for Information Technology
Seoul National University, Seoul, 151-742, Korea
Tel : +82-2-880-8394 / Fax : +82-2-880-8220
E-mail : hjshim@diehard.snu.ac.kr

Ⅰ. INTRODUCTION

uantification of morphology of vascular structures 
from CT angiography (CTA) images is very important, 

because cardiovascular diseases and cerebro-vascular diseases 
are the first and fifth causes of death among all kinds of causes 
[1] and many of them are related with abnormalities in vessels, 
such as aneurism, stenosis, calcification, and so on. Explosive 
increase in the number of CT images has enabled radiologists 
to examine these abnormalities [2], but at the same time it 
brought about the need for automation of segmentation of 
vascular structures. Among many segmentation algorithms of 
vascular structures [3], tracking-based techniques [4-7] focus 
on directly extracting the vessel centerline and cross-sectional 
boundaries and they are, thus, relatively robust to cluttered 
background and low signal-to-noise ratios.

Furthermore, examination of the radius of vessel lumen 
along the extracted centerline allows for detection of vascular 
abnormalities which show abrupt change in the lumen radius. 
However, tracking-based methods require an initial condition, 

which is often termed a seed, for each vessel segment, 
construction of vascular structures is very challenging. There 
have been numerous approaches to address this issue [6, 8-10].

Chen and Molloi [8] constructed three dimensional (3-D) 
vascular structures through thinning and skeleton pruning. 
They used CT angiograms of porcine hearts as the input.  This 
work employed a global threshold for binarization prior to the 
thinning process and, therefore, cannot circumvent shortcomings 
of the global threshold. Cerebral ateries of human beings are 
more complicated than coronary arteries of pigs and they often 
exist in the vicinity of bones and veins. Because arteries have 
intensity distributions overlapped with those of bones and veins 
in CT angiograms, simple binarization using global thresholds 
often fails in segmentation of arterial vascular structures.

Shim et al. [6] have partitioned a CTA volume into the 
upper and lower sub-volumes and extracted cerebral arteries 
with a separate algorithm applied to each sub-volume, i. e. 
adaptive tracking method to the lower sub-volume and 
thresholding-based region growing to the upper sub-volume. 
As a consequence, it has inconsistency in methods over the 
whole volume, which results in discontinuities between the 
lowest slice of the upper sub-volume and the highest one of 
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Fig.1. The block diagram for detection of new seeds
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Fig.2. Division of a vessel segment into sub-segments which are overlapped 
with adjacent ones: (a)  generation of a sub-segment in each volume 
of interest (VOI) which is represented by a black box, (b) 
enlargement of the cross-sections of a specific sub-segment which is 
enclosed by the black box denoted by the arrow, (c) the solid 
sub-segment voxelized from the cross-sections of (b) by filling every 
gap between the adjacent cross-sections.

the lower sub-volume. This work also suffers from the same 
drawbacks of global thresholds in the upper sub-volume.

In Al-Kafai et al.’s work [9], seed points were detected by 
seeking local maxima intensity values over a coarse grid. They 
used adaptive thresholding to filter out false detections that are 
due to noise or imaging artifacts. The input images of this 
work are confocal microscope images which are 2-D, and, 
accordingly, this work is not suitable to 3-D images of CT 
angiography.

On the while, Hong et. al [10] revealed cerebro-vascular 
structures by eliminating bones in brain. They used two CT 
image volumes of a patient which had been scanned before 
and after injection of contrast agent, respectively. The two CT 
volumes were rigidly registered to each other and then the 
pre-contrast volume was subtracted from the post-contrast 
one. This approach works much better than the others and, 
thus, is used as a reference in visual comparative evaluation of 
the performance of our algorithm. However, it requires twice 
of scanning which doubles the radiation exposure and cost for 
patients and suffers from motion artifacts.

In this paper, a new method is proposed to detect seeds for 
tracking of arterial segments which takes into account not only 
intensity values of individual pixels but also shape features of 
pixel groups. The experimental results with actual CT 
angiograms of brain and heart showed construction of vascular 
structures witch are comparable to the registration-subtraction 
results [10] using  both the pre-contrast and post-contrast CT 
volumes.

Ⅱ. Methods

Since the proposed method aims to detect new seeds, it 
assumes that some vessel segments have been extracted by 
one of tracking algorithms [4-7]. Neighborhood of each vessel 
segment is examined in sequential steps along its centerline to 
detect new seeds. The block diagram in Figure 1 illustrates 
how new seeds are detected for each sub-segment. The 
following subsections will describe each block of Figure 1 

grouping some related blocks together.

A. Generation of volume of interest (VOI) and thresholding
Figure (2a) shows a single vessel segment which was 

already tracked and is composed of   elliptical cross-sections. 
The vessel segment is divided into   sub-segments and 
each sub-segment is examined to see if there is any new seed 
around it. Adjacent sub-segments are supposed to overlap with 
each other so that seeds near the frontal and back ends of the 
sub-segment should not be missed. Empirically,  = 61 and 
the number of overlapped cross-sections,  = 30 which 
means that almost every cross-section is checked twice for 
new seed detection.

Three sub-segments are exemplified in Figure (2a) and the 
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Fig.3. Processing to detect new seeds in VOI(Volume of Interest) : (a) thresholding result using local statistics,  , (b) dilated voxelization of the arterial 
sub-segment, , (c) difference between (a) and (b),   .

volume of interest (VOI) including each of them is denoted by 
a black box. The one with the arrow is enlarged in Figure (2b) 
and (2c). Figure (2b) shows the cross-sections which constitute 
the sub-segment in more detail. A solid sub-segment is 
generated by voxelization of the cross-sections of Figure (2b) 
into triangular meshes [11].

Then, the VOI including the sub-segment is thresholded to 
exclude other voxels than vessels. Since global threhsolds 
often fail in separation of arteries from bones and vein 
contamination, we computed the thresholds using local 
statistics of the arterial sub-segment, i.e., the mean  and the 
standard deviation   of the intensity distribution. As 
previously stated, the sub-segment is obtained by voxelization 
of   elliptical cross-sections and is assumed to have HU 
values of Gaussian distribution. Two asymmetric thresholds 
are defined by 

        (1)

where   and   determine the range of intensities to which 
the new sub-segment should belong.   is the threshold 
between bones and arteries, because bones usually have higher 
HU values. On the contrary,   separates arteries from 
other tissues of lower HU values. Since the bone distribution 
can be more easily separated from the artery,   is set to be 
farther from the mean  than  , which means that    . 
Empirically we established     and     so that the 
interval     may include about 80% of voxels in 
the sub-segment by the assumption of Gaussian distribution. 
Figure (3a) is the thresholding result represented by   in 
Figure 1.

B. Dilation of a sub-segment and subtraction
If the voxelized volume of Figure (2c) is subtracted from 
 , that is, the thresholding of the VOI, only the voxels 
which have intensity values in the interval     and 
at the same time do not belong to the sub-segment. To ensure 
that the sub-segment is removed completely in the subtraction 
result  , before subtraction, the voxelized volume is 
dilated with a spherical structuring element of radius  , 
which is empirically set to 3. Figure (3b) shows the dilated 
voxelization result   and Figure (3c) displays the binary 
subtraction result represented by    . Now, we 
should find elongated connected components which are 
expected to be parts of a vessel segment that is not tracked yet.

C. Shape analysis of the remaining components
The voxels in the binary volume   have the intensity 

values in    , but simultaneously do not belong to 
the current arterial sub-segment. On that account, new seeds 
should be detected among the connected components in the 
volume  which is obtained by connected component 
analysis (CCA) of  . Each connected component  
         in  is analyzed to see 
whether it includes a new seed or not. In other words, it should 
be long enough to be considered as part of a new vessel 
segment. Accordingly, only the connected component having 
the longest path-length longer than a threshold   should be 
analyzed. According to its shape, we established three 
categories of tube-like objects, blob-like objects, and 
plate-like objects and classified a component   into one of 
them. Then the tube-like one is selected as a new vessel 
segment. More specifically, its classification depends on the 
eigenvalues     of the covariance matrix   of  .
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Fig.4. The relationship between an object shape and the magnitudes of the eigenvalues of the covariance matrix: (a) blob-like object (  ≃ ≃), 
(b) plate-like object ( ≃ ≫ ), (c) tube-like object( ≫  ≃).

  , where       and 








  
  
  

. (2)

The eigenvalues are ordered according to their magnitudes 
as   ≥   ≥  . The relationship between the object 
shape and the relative magnitude of eigenvalues is illustrated 
in Figure 4.

To measure the vesselness of the component  , two ratios 
 and  are defined as

 


  


 




 





 (3)

 and  are very similar to the geometric ratios defined in 
[12], but are more intuitive, since they can be factorized into 
the product of the relative ratios of the eigenvalue magnitudes 
as eq. (3). Both of them are between [0,1].  differentiates 
the blob-like object from both the plate-like and tube-like 
objects. If it approaches to 1, it means   ≃   ≃  , and 
the component   is blob-like. On the other hand,  is used to 
distinguish between the plate-like and the tube-like objets. If it 
is close to 1, the component is considered as a plate-like 
object. Conversely if  ≃0, it is a tube-like object and 
finally is selected to have a new seed inside. Compactly the 
selection of the component   can be represented as

Longest-pathlength() > ,  < , and  < . (4)

The new initial seed is defined as the centroid of contact 
surface between the component and the artery sub-segment. 
The initial direction for the new tracking is set to the 

eigenvector   corresponding to  .

Ⅲ. Experiments

The proposed segmentation method has been tested with 
actual clinical data provided by Seoul National University 
Bundang Hospital. The dataset is composed of four pairs of 
pre-contrast and post-contrast brain CT images. The 
reconstruction thickness/interval is   and the 
contrast agent injection is     and     
for the post-contrast CT volumes.

At first, four initial conditions were placed to initiate four 
instances of tracking for the left and right internal carotid 
arteries (ICA) and the left and right vertebral arteries (VA). 
The tracking algorithm previously devised by Shim et al. [7] 
extracted four vessel segments and then the seed detection 
algorithm proposed in this paper automatically discovered 
new seeds for further extraction of vessel segments. 
Combination of tracking and seed detection was recursively 
iterated three times and finally constructed cerebra-vascular 
structures.

Since each dataset has the pre-contrast and the post-contrast 
series, the proposed method was compared visually to the 
registration-subtraction method [10] using both the pre-contrast 
and post-contrast volumes, which has been performed using 
3-D registration and bone subtraction.

Additionally, the proposed algorithm was performed on one 
cardiac CT angiogram to extract coronary arteries, i. e. right 
coronary artery (RCA), left anterior descending artery (LDA), 
and left circumflex artery (LCX). Since a heart beats all the 
time, registration is not so simple as in brain images, so the 
registraion-subtraction method [10] cannot be used as a 
reference. Instead, a commercial software modularized in 



Hackjoon Shim, Hyunjoon Lee, Il Dong Yun, and Sang Uk Lee

Vol 31 󰠛 December, 2010 431

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Fig.5. Visual comparison for performance evaluation on brain CT images: (a), (c), (e), (g) the results of the tegistration-subtracion method [10], (b), (d), (f), (h) the 
results of the proposed method.
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Fig.6. Visual comparison for performance evaluation on a cardiac CT image: (a) the result of a commercial software of Philips, (b) the result of the proposed 
method.

Philips BrillianceTM workstation was employed as a reference 
for visual comparison.

Ⅳ. Discussion

The overall segmentation results for the four datasets were 
mostly satisfying in that most of main arteries of the Circle of 
Willis have been extracted. Figure 5 illustrated the visual 
comparison of the segmentation results of the proposed 
method to the Registration-Subtraction results for the four 
datasets. Figures (5a), (5c), (5e), and (5g) correspond to the 
registration-subtraction results and show quite clearly the 
cerebro-vascular structures including arteries. However, they 
require double-scanning and have the inevitable drawbacks of 
the large motion artefact and vein contamination.

The results of the proposed method are shown in Figures 
(5b), (5d), (5f), and (5h). Though they reveal some broken 
vessel segments and missing ones, each of them exhibits the 
vessel tree structure evidently. The missing segments might be 
tracked by additional user interaction or using the prior 
anatomical knowledge. Additionally the thick veins in the 
registration-subtraction results which are not related to 
aneurysms have been removed and this led to improvement in 
the visibility of only the arterial tree structure. As a result, the 
segmentation results of the proposed method in Figures (5b), 
(5d), (5f), and (5h) can be asserted to be comparable to the 
corresponding registration-subtraction results in Figures (5a), 
(5c), (5e), and (5g).

A radiologist who is expert on cerebral vascular structure 
evaluated the results and commented that they were 
comparable to the registration-subtraction results and could be 
even better for examination of tiny vessels in the sense that the 
proposed segmentation is not so much affected by the motion 
artefact as the registration-subtraction method [10].

Additionally, application of the proposed method to a cardiac 
CT also built cardio-vascular structures (Figure (6b)) compatible 
with the commercial software of Philips (Figure (6a)).

In conclusion, we proposed a new seed detection algorithm 
based on shape analysis of the connected components in a VOI 
around a vessel segment which had been already extracted by 
tracking. The eigenvalues of the covariance matrix were used 
as the shape features for the detection. The experimental 
results on actual clinical data showed that the results of the 
proposed method  totally revealed the arterial tree not hindered 
by bone or veins. Furthermore, the thick veins of no interest 
were removed in the results. Since the registration-subtraction 
method requires scanning twice, the proposed method has the 
advantages of reducing the cost and burden of patients, while 
it maintains the quality of segmentation results as comparable 
to the reference method [1]. In addition, the segmentation 
result itself is significant for computer assisted diagnosis 
(CAD), because it is used as coarse input to a more accurate 
modelling scheme such as [13].
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