• Title/Summary/Keyword: instability analysis

Search Result 1,625, Processing Time 0.028 seconds

Nature of the Wiggle Instability of Galactic Spiral Shocks

  • Kim, Woong-Tae;Kim, Yonghwi;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2014
  • Gas in disk galaxies interacts nonlinearly with a underlying stellar spiral potential to form galactic spiral shocks. Numerical simulations typically show that these shocks are unstable to the wiggle instability, forming non-axisymmetric structures with high vorticity. While previous studies suggested that the wiggle instability may arise from the Kelvin-Helmholtz instability or orbit crowding of gas elements near the shock, its physical nature remains uncertain. It was even argued that the wiggle instability is of numerical origin, caused by the inability of a numerical code to resolve a shock that is inclined to numerical grids. In this work, we perform a normal-mode linear stability analysis of galactic spiral shocks as a boundary-value problem. We find that the wiggle instability originates physically from the potential vorticity generation at a distorted shock front. As the gas follows galaxy rotation, it periodically passes through multiple shocks, successively increasing its potential vorticity. This sets up a normal-mode that grows exponentially, with a growth rate comparable to the orbital angular frequency. We show that the results of our linear stability analysis are in good agreement with the those of local hydrodynamic simulations of the wiggle instability.

  • PDF

Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up (이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성)

  • JEONG, JIWOONG;HAN, JAEYOUNG;JEONG, JINHEE;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

Reliability and Validity of the Side-lying Instability and Prone Instability Tests in Patients with Lumbar Segmental Instability

  • Kim, Bo-Eon;Lee, Kwan-Woo;Park, Dae-Sung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • PURPOSE: The purpose of this study is to conduct inter-rater and intra-rater reliability tests in patients with low back pain (LBP) using the prone instability test (PIT) and side-lying instability test (SIT). We have analyzed the Korean version Oswestry disability index (K-ODI) correlations and radiograph finding (RF) for validity. METHODS: Individuals (n = 51) (mean age of 40.27 ± 13.28) with LBP for at least over a week were recruited, together with two participating physical therapist examiners. The measurement consisted of PIT, PST, K-ODI, and RF. Sensitivity (Sn), specificity (Sp), positive predictive value, negative predictive value, prevalence index, agreement %, Cohen's kappa, and prevalence-adjusted bias-adjusted kappa (PABAK) were calculated. The PIT and SIT were compared with RF for validity analysis, while PIT, SIT, K-ODI, and RF were calculated for the correlation analysis. RESULTS: The intra-rater reliability test measured for the PIT (kappa = .79, PABAK = .88) and SIT (kappa = .73, PABAK = .84), and inter-rater reliability test measured for the SIT (kappa = .80, PABAK = .88) showed good agreements. The PIT (Sn = .65, Sp = .63) and SIT validities (Sn = .68, Sp = .70) were compared with RF, showing a significant correlation in PIT and RF (r = .69), SIT and RF (r = .73), and PIT and K-ODI (r = .53). CONCLUSION: The SIT is a more comfortable position test than the PIT in patients. Both PIT and SIT have acceptable reliability and validity.

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 2 : Nonlinear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 2 : 비선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2012
  • It is very important to predict the nonlinear behavior of combustion instability such as transition phenomena and limit cycle amplitude for fully understanding and controlling the instabilities. These nonlinear instability characteristics are highly dependent upon the flames' nonlinear dynamics in a gas turbine premixed combustor. In this study, nonlinear instability TA(Thermo-acoustic) models were introduced by applying the concept of flame describing function to the thermoacoustic analysis method. As a result of model development, for a given combustor length, the growth rate of instability was greatly affected by the change in amplitude, although the instability frequency was not. Further researches under various operating conditions and model validation on limit cycle amplitude are required.

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

A Comparative Analysis of Dynamic Instability Characteristic of Geiger-Typed Cable Dome Structures by Load Condition (Geiger형 케이블 돔 구조물의 외력에 따른 동적 불안정 특성 비교분석)

  • Kim, Seung-Deog;Sin, In-A
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • The purpose of this paper is to study comparative of dynamic instability characteristic of Geiger-typed cable dome structures by load condition, which is well-known among the cable dome structures that are the lightweight hybrid structure using compression and tension element continuously. Dynamic buckling process in the phase plane is very important thing for understanding why unstable phenomena are sensitively originated in nonlinear dynamic by various initial conditions. But there is no paper for the dynamic instability of hybrid cable dome by Sinusoidal Excitations, many papers which deal with the dynamic instability for shell-structures under the step load have been published. As a result of Geiger-typed cable dome, which shows chaotic behavior in dynamic nonlinear analysis with initial imperfection.

Dynamic Instability Behavior of Diagonally Braced Steel Frames under Seismic Excitation (지진하중을 받는 대각선 철골 중심가새골조의 동적 불안정 거동)

  • Lee, Cheol-Ho;Kim, Jung-Jae
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • Concentrically braced steel frames are considered as being quite prone to soft-story response due to the degradation in brace compressive resistance after buckling under severe ground motions. When combined with the system P-Delta effects, collapse of the concentrically braced frames by dynamic instability becomes a highly probable. In this study, a new, relatively simple dynamic instability coefficient was proposed for diagonally braced steel frames by considering the strength degradation of the brace after buckling. Nonlinear dynamic analysis was conducted to check the robustness of the proposed index based on simulated ground motions. The analysis results showed that the dynamic instability index proposed predicts the collapse potential more consistently than the conventional one. Dynamic instability was triggered when the index value was close to 0.7.

  • PDF

Experiment and data analysis for system identification of thermoacoustic instability in a Rijke tube (Rijke 튜브의 열음향학적 불안정 현상의 시스템 식별을 위한 실험 및 데이터 분석)

  • Na, Seon-Hwa;Ko, Sang-Ho;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.809-813
    • /
    • 2010
  • For the purpose of developing a modeling technique for reduced-order dynamics of thermoacoustic instability, we constructed an electrically heated Rijke tube and measured the pressure oscillation inside the tube. Analysing the measured pressure data showed that the instability generated three major oscillation modes, among which the first mode frequency quite well matches the result from a rough acoustic analysis. As a continuing research, a data-based modeling technique for the thermoacoustic instability will be developed in the near future.

  • PDF

A Combustion Instability Analysis of a Model Gas Turbine Combustor by the Transfer Matrix Method

  • Cha, Dong-Jin;Kim, Jay-H.;Joo, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2946-2951
    • /
    • 2008
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use the advantages of not only the transfer matrix method but also well-established classic control theories. The approach is applied to a simple gas turbine combustion system to demonstrate the validity and effectiveness of the approach.

  • PDF

Combustion Instability Modeling in a Hydrogen-Natural Gas Mixed Fuel Gas Turbine Combustor using a 3-Dimensional Finite Element Method Approach (3차원 유한요소해석 기법을 사용한 수소-천연가스 혼소 가스터빈 연소기에서의 연소불안정 해석)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.36-41
    • /
    • 2022
  • In this study, the combustion instability characteristics according to the change in the hydrogen ratio in the fuel in the single nozzle system of the hydrogen-natural gas mixed gas turbine for power generation was analyzed using a three-dimensional finite element analysis-based Helmholtz solver. This combustor shows the instability characteristics in which mode transition occurs from a mode having a low amplitude near 70 Hz to a mode having a high amplitude of 250 Hz or higher as the hydrogen fraction in the fuel increases. The current modeling results are found to reasonably predict the main characteristics of the change in measured instability frequency and growth rate with the change in fuel composition.