• Title/Summary/Keyword: insoluble phosphate solubilization

Search Result 36, Processing Time 0.033 seconds

Plant Growth Promotion in Soil by Some Inoculated Microorganisms

  • Jeon, Jong-Soo;Lee, Sang-Soo;Kim, Hyoun-Young;Ahn, Tae-Seok;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.271-276
    • /
    • 2003
  • The inoculation of some microorganisms into a microcosm containing soil from a barren lakeside area at Lake Paro in Kangwon-do enhanced plant growth significantly. The direct and viable counts of soil bacteria and soil microbial activities measured by electron transport system assay and fluorescein diacetate hydrolysis assay were higher in inoculated soil. The plant growth promoting effect of this inoculation may be caused by phytohormone production and the solubilization of insoluble phosphates by the inoculated bacteria. Three inoculated strains of Pseudomonas fluorescens produced several plant growth promoting phytohormones, including indole-3-acetic acid (auxin), which was confirmed by thin layer chromatography and GC/MS. P. fluorescens strain B16 and M45 produced 502.4 and 206.1 mg/l of soluble phosphate from Ca3(PO4)2 and hydroxyapatite, respectively. Bacillus megaterium showed similar solubilization rates of insoluble phosphates to those of Pseudomonas spp. We believe that this plant growth promoting capability may be used for the rapid revegetation of barren or disturbed land.

Conditions for Soluble Phosphate Production by Environment-Friendly Biofertilizer Resources, Pseudomonas fluorescens (환경친화적 미생물비료 자원 Pseudomonas fluorescens RAF15에 의한 가용성 인산 생산에 영향을 미치는 조건)

  • Park, Ki-Hyun;Park, Geun-Tae;Kim, Sung-Man;Lee, Chung-Yeol;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1033-1037
    • /
    • 2008
  • The effects of inorganic salts, inoculum concentration, aeration rate and shaking speed on insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 were investigated. Soluble phosphate production was dependent on the presence of $MgCl_2{\cdot}6H_2O$ and $MgSO_4{\cdot}7H_2O$ in the medium. Supplementation of medium with 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl slightly increased soluble phosphate production. The optimal medium compositions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% glucose, 0.005% urea, 0.3% $MgCl_2{\cdot}6H_2O$, 0.01% $MgSO_4{\cdot}7H_2O$, 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl, respectively. Optimal inoculum concentration was 2.0%(v/v). Maximum soluble phosphate production was obtained with 20-50 ml/250-ml flask and 200 rpm of shaking speed, respectively. The addition of EDTA decreased cell growth and soluble phosphate production.

Solubilization of Insoluble Phosphates by Penicillium sp. GL-101 Isolated from Soil (토양에서 분리한 Penicillium sp. GL-101에 의한 난용성 인산염의 가용화)

  • Choi, Myoung-Chul;Chung, Jong-Bae;Sa, Tong-Min;Lim, Sun-Uk;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.329-333
    • /
    • 1997
  • Phosphate solubilizing microorganisms (1,000 bacteria and 200 fungi) were isolated from soil around Kyungnam and Kyungbook regions using potato dextrose agar-calcium phosphate medium. A fungus with the greatest phosphate solubilizing activity was selected and identified to Penicillium sp. GL-101, based on the morphological characteristics of conidiophore and conidia; flask shape of phialide, simple branching type of conidiophore, and columnar shape of conidial head, in malt extract agar and potato dextrose agar media. The optimum temperature and initial pH to solubilize rock phosphate in potato dextrose broth-rock phosphate medium were $25^{\circ}C$ and pH 7.5, respectively. In these optimum conditions, phosphate solubilizing activities of Penicillium sp. GL-101 against four types of insoluble phosphate: tricalcium-phosphate, aluminium phosphate, hydroxyapatite and rock phosphate, were quantitatively determined. As results, this fungus highly discharged free phosphates to the culture broth with the concentrations of 1,152 ppm against tricalcium-phosphate, 565 ppm against rock phosphate, 292 ppm against aluminium phosphate, and 217 ppm against hydroxyapatite, respectively.

  • PDF

Characteristics of Insoluble Phosphates Solubilizing by Klebsiella sp. DA71-1/pLYJ (Klebsiella sp. DA71-1/pLYJ의 난용성 인산염 가용화 특성)

  • Ryu, Ah-Reum;Lee, Jin-Woo;Lee, Yong-Seok;Lee, Sang-Cheol;Chung, Soo-Yeol;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.676-682
    • /
    • 2006
  • To develop high efficiency biofertilizer solubilizing insoluble phosphates, lactate dehydrogenase (ldh) gene was isolated from Staphylococcus sp. LJ2. Genetic constructions were carried out using the pGEM-T-easy vector and pHSG398. Recombinant DNA plasmids containing the ldh gene were transferred to Klebsiella sp. DA71-1 by electroporation. The selected transformant was named as a DA71-1/pLYJ. The insoluble phosphates solubilization activity of DA71-1/pLYJ was higher than that of DA71-1 at various culture conditions. Glucose was the best carbon source for insoluble phosphates solubilization among the used carbon sources. Maximal insoluble phosphates solubilizing was found in sucrose minimal (SM) medium containing 3% glucose. The solubilizing activity of DA71-1/pLYJ against three types of insoluble phosphates, such as tri-calcium phosphate, hydroxyapatite, aluminium phosphate, were quantitatively determined. The optimal temperature and initial pH to solubilize insoluble phosphates in the SM medium was $37^{\circ}C$ and pH 5.0, respectively.

Solubilization of Insoluble Phosphates by Pseudomonas putida, Penicillium sp. and Aspergillus niger Isolated from Korean Soils (한국 토양(土壤)에서 분리(分離)된 Pseudomonas putida, Penicillium sp. 및 Aspergillus niger에 의한 난용성(難溶性), 인산염(燐酸鹽)의 가용화(可溶化))

  • Suh, Jang-Sun;Lee, Sang-Kyu;Kim, Kwang-Sik;Seong, Ki-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.278-286
    • /
    • 1995
  • Phosphate-solubilizing microorganisms were isolated from agricultural area in Korea, and the solubilizing potential of microorganisms was evaluated in vitro. Of the several microorganisms Pseudomonas putida, Penicillium sp., and Aspergillus niger showed solubilization in all phosphatic compounds such as hydroxyapatite, tricalcium phosphate, aluminium phosphate and rock phosphate tested. Inorganic P solubilization was directly related to the pH drop by each microorganisms. Aspergillus niger was found to be more active in solubilizing phosphate than Pseudomonas putida and Penicillium sp.. The maximum concentration of phosphorus released from each of aluminium phosphate, hydroxyapatite and tri-calcium phosphate by Aspergillus niger in liquid culture was 776ppm, 665ppm and 593ppm, respectively when $KNO_3$ was added as nitrogen source. For rock phosphate, it was 411ppm with ammonium sulfate as nitrogen source.

  • PDF

Mechanisms of Phosphate Solubilization by PSB (Phosphate-solubilizing Bacteria) in Soil (인산가용화 미생물에 의한 토양 내 인산이온 가용화 기작)

  • Lee, Kang-Kook;Mok, In-Kyu;Yoon, Min-Ho;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • Among the major nutrients, phosphorus is by far the least mobile and available to plants in most soil conditions. A large portion of soluble inorganic phosphate applied to soil in the form of phosphate fertilizers is immobilized rapidly and becomes unavailable to plants. To improve the plant growth and yield and to minimize P loss from soils, the ability of a few soil microorganisms converting insoluble forms into soluble forms for phosphorus is an important trait in several plant growth-promoting microorganisms belonging to the genera Bacillus and Pseudomonas and the fungi belonging to the genera Penicillium and Aspergillus in managing soil phosphorus. The principal mechanism of solubilization of mineral phosphate by phosphate solubilizing bacteria (PSB) is the release of low molecular weight organic acids such as formic, acetic, propionic, lactic, glycolic, fumaric, and succinic acids and acidic phosphatases like phytase synthesized by soil microorganisms in soil. Hydroxyl and carboxyl groups from the organic acids can chelate the cations bound to phosphate, thereby converting it into soluble forms.

Effect of Amino Acid Solution for Cell Growth and MPS Activity of Mineral Phosphate Microorganisms. (아미노산액 처리에 의한 인산가용화균주의 생육 및 가용화 효과)

  • 이진우;정연주;최시림;김재훈;유주순;김영길;최용락
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.490-495
    • /
    • 2004
  • Phosphate-solubilizing activities of the two strains (Burkholderia sp. DA23 and Klebsiella sp. DA7l-1) against tri-calcium phosphate and hydroxyapatite were quantitatively determined. Two strains were found to solubilize two types of insoluble phosphate different amounts of amino acid solutions in liquid culture. MPS ability of the strains was increased with concentration of amino acid addition. The optimal solubilization condition of insoluble phosphate in sucrose minimal medium were 0.1% amino acid solution, respectively. The efficiency of amino acid addition was no difference between the two types of insoluble phosphate, tri-calcium phosphate and hydroxyapatite.

Isolation and Characterization of Insoluble Phosphate-Solubilizing Bacteria with Antifungal Activity (항진균능을 가진 불용성 인산 가용화 세균의 분리 및 특성)

  • Park, Ki-Hyun;Son, Hong-Joo
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • To develop multifunctional microbial inoculant, an insluble phosphate-solubilizing bacterium with antifungal activity was isolated from plant rhizospheric soil. On the basis of its morphological, cultural and physiological characteristics and Biolog analysis, this bacterium was identified as Pseudomonas fluorescens RAF15. P. fluorescens RAF15 showed antifungal activities against phytopathogenic fungi Botrytis cinerea and Rhizoctonia solani. The optimal medium composition and cultural conditions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% of glucose, 0.005% of urea, 0.3% $MgCl_2{\cdot}6H_2\;0.01%\;of\;MgSO_4{\cdot}7H_2O\;0.01%,\;of\;CaCl_2{\cdot}2H_2O$, and 0.05% of NaCl along with initial pH 7.0 at $30^{\circ}C$. The soluble phosphate production under optimum condition was 863 mg/L after 5 days of cultivation. The solubilization of insoluble phosphates was associated with a drop in the pH of the culture medium. P. fluorescens RAF15 showed resistance against different environmental stresses like $10-35^{\circ}C$ temperature, 1-4% salt concentration and pH 2-11 range. The strain produced soluble phosphate to the culture broth with the concentrations of 971-1121 mg/L against $CaHPO_4$, 791-908 mg/L against $Ca_3(PO_4){_2}$, and 844 mg/L against hydroxyapatite, respectively. However, the strain produced soluble phosphate to the culture broth with the concentrations of 15 mg/L against $FePO_4$, and 5 mg/L against $AlPO_4$, respectively.

Isolation and Cultural Characteristics of a Phosphate-Solubilizing Bacterium, Aeromonas hydrophila DA57 (인산가용화균 Aeromonas hydrophila DA 57의 분리와 배양 중 가용화특성)

  • Song, Ok-Ryul;Lee, Seung-Jin;Kim, Se-Hoon;Chung, Soo-Yeol;Cha, In-Ho;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.251-256
    • /
    • 2001
  • To develop biofertilizer solubilizing inorganic phosphate, a bacterium having high abilities to solubilize inorganic phosphate were isolated from cultivated soils. The strain was identified to Aeromonas hydrophila DA57, based on the physiological and biochemical properties. The optimum temperature and initial pH to solubilize insoluvle phosphate in sucrose minimal medium were $30^{\circ}C$ and pH 7.0, respectively. In these conditions phosphate solubilizing activities of the strain against three types of insoluble phosphate were quantitatively determined. It was possivle to distinguish between solubilization through release of gluconic acid and still unknown mechanism. Aemmonas hydrophila DA57 harbored a 4.5 kb cryptic plasmid.

  • PDF

Solubilization of Hardly Soluble Phosphates and Growth Promotion of Maize (Zea mays L.) by Penicillium oxalicum Isolated from Rhizosphere

  • SHIN WANSIK;RYU JEOUNGHYUN;CHOI SEUNGJU;KIM CHUNGWOO;GADAGI RAVI;MADHAIYAN MUNUSAMY;SESHADRI SUNDARAM;CHUNG JONGBAE;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1273-1279
    • /
    • 2005
  • Penicillium oxalicum strain CBPS-3F-Tsa, an efficient phosphate solubilizing fungus, was evaluated for its production of organic acid in vitro and effect of inoculation on the growth promotion of Maize under greenhouse conditions. The fungus solubilized 129.1, 118.8, and 54.1 mg P/1 of tricalcium phosphate [$Ca_{3}(PO_{4})_{2}$], aluminum phosphate ($A1PO_{4}$),and ferric phosphate ($FePO_{4}$), respectively, after 72 h of incubation. Malic acid, gluconic acid, and oxalic acid were detected in the flasks supplemented with various phosphate sources [240, 146, 145 mM/1 $A1PO_{4},\;FePO_{4},\;and\;Ca_{3}(PO_{4})_{2}$, respectively] together with a large amount of malic acid followed by the other two. The effects of inoculation of P. oxalicum CBPS-3F-Tsa on maize plants were studied under pot culture conditions. P. oxalicum CBPS-3F-Tsa was inoculated to maize plants alone or together with inorganic phosphates in the form of fused phosphates (FP) and rock phosphates (RP). Inoculation of P. oxalicum CBPS-3F-Tsa increased the plant growth and N and P accumulation in plants, compared with control plants, and also had positive effects when applied with RP. The results of this study show that the fungus P. oxalicum strain CBPS-3F-Tsa could solubilize different insoluble phosphates by producing organic acids, particularly malic acid, and also improved the efficiency of RP applied to maize plants.