Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.2.169

Mechanisms of Phosphate Solubilization by PSB (Phosphate-solubilizing Bacteria) in Soil  

Lee, Kang-Kook (Dept. of Bio-environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Mok, In-Kyu (Dept. of Bio-environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Yoon, Min-Ho (Dept. of Bio-environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Kim, Hye-Jin (Dept. of Bio-environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Chung, Doug-Young (Dept. of Bio-environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.2, 2012 , pp. 169-176 More about this Journal
Abstract
Among the major nutrients, phosphorus is by far the least mobile and available to plants in most soil conditions. A large portion of soluble inorganic phosphate applied to soil in the form of phosphate fertilizers is immobilized rapidly and becomes unavailable to plants. To improve the plant growth and yield and to minimize P loss from soils, the ability of a few soil microorganisms converting insoluble forms into soluble forms for phosphorus is an important trait in several plant growth-promoting microorganisms belonging to the genera Bacillus and Pseudomonas and the fungi belonging to the genera Penicillium and Aspergillus in managing soil phosphorus. The principal mechanism of solubilization of mineral phosphate by phosphate solubilizing bacteria (PSB) is the release of low molecular weight organic acids such as formic, acetic, propionic, lactic, glycolic, fumaric, and succinic acids and acidic phosphatases like phytase synthesized by soil microorganisms in soil. Hydroxyl and carboxyl groups from the organic acids can chelate the cations bound to phosphate, thereby converting it into soluble forms.
Keywords
Phosphorus; Phosphate-solubilizing bacteria; Phosphate solubilization;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahmad A.K., J. Ghulam, S.A. Mohammad, M.S.N. Syed, and R. Mohammad. 2009. Phosphorus Solubilizing Bacteria: Occurrence, Mechanisms and their Role in Crop Production. J. Agric. Biol. Sci. 1:48-58.
2 Alan, E.R. and J.S. Richard. 2011. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156:989-996.   DOI
3 Asea, P.E.A., R.M.N. Kucey, and J.W.B. Stewart. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture. Soil Biol. Biochem. 20:459-464.   DOI   ScienceOn
4 Babu-Khan, S., T.C. Yeo, W.L. Martin, M.R. Duron, R.D. Rogers, and A.H. Goldstein. 1995. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl. Environ. Microbiol. 61:972-978.
5 Banik, S. and B.K. Dey. 1982. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil. 69:353-364.   DOI
6 Beech, I.B., M. Paiva., M. Caus., and C. Coutinho. 2001. Enzymatic activity and within biofilms of sulphate-reducing bacteria. In: P. G. Gilbert, D. Allison, M. Brading, J. Verran and J. Walker (eds.), Biofilm Community Interactions: chance or necessity? BioLine, Cardiff, UK. pp.231-239.
7 Cosgrove, D.J. 1967. Metabolism of organic phosphates in soil. In: A.D. Mclaren and G.H. Peterson (eds.), Soil Biochemistry, Vol. I. Marcel & Dekker, NY. p.216-228.
8 Dodor, D.E. and A.M. Tabatabai. 2003. Effect of cropping systems on phosphatases in soils. J. Plant Nutr. Soil Sci. 166:7-3.   DOI
9 Goldstein, A.H. and S.T. Liu. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bio/Technology. 5:72-74.   DOI
10 Goldstein, A.H. 1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini, A., Yagil, E., and Silver, S. editors. Phosphate in Microorganisms: Cellular and Molecular Biology. Washington, DC: ASM Press. 197-203.
11 Goldstein, A.H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biol. Agri. Hort. 12:185-193.   DOI
12 Goosen, N., H.P. Horsman, R.G. Huinen, and P. van de Putte. 1989. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia oli K-12. J. Bacteriol. 171:447-455.
13 Gyaneshwar, P., L.J. Parekh, G. Archana, P.S. Podle, M.D. Collins, R.A. Hutson, and K.G. Naresh. 1999. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol. Lett. 171:223-229.   DOI   ScienceOn
14 Halder, A.K., A.K. Mishra, P. Bhattacharyya, P. and P.K. Chakrabartty. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen. Appl. Microbiol. 36:81-92.   DOI
15 Hayat, R., S. Ali, U. Amara, R. Khalid, and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol. 60:579-98.   DOI
16 Joa, J.H., H.C. Lim, S.G. Han, S.J. Chun, and J.S. Suh. 2007. Characteristics of Bacillus sphaericus PSB-13 as phosphate solubilizing bacterium isolated from citrus orchard soil. Korean J. Soil Sci. Fert. 40:405-411.
17 Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173-195.   DOI   ScienceOn
18 Illmer, P. and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24:389-395.   DOI   ScienceOn
19 Jansson, M. 1987. Anaerobic dissolution of iron-phosphorus complexes in sediment due to the activity of nitratereducing bacteria, Microb. Ecol. 14:81-89.   DOI
20 Kang, S.C. and M.C. Choi. 1999. Solid culture of phosphate-solubilizing fungus, Penicillium sp. PS-113. Kor. J. Appl. Microbiol. Biotechnol. 27:1-7.   과학기술학회마을
21 Kang, S.C., M.O. Kang, and U.H. Yang. 2001. Mechanism of free phosphate production by penicillium sp. GL-101, phosphate solubilizing fungus, in the submerged culture. Korean J. Environ. Agric. 20:1-7.   과학기술학회마을
22 Kim, H.O., Z.K. Uo, S.C. Lee, and R.M.N. Kucey. 1984. Mycorrhizae distribution and rock phosphate dissolution by soil fungi in the citrus fields in Jeju-do. Cheju National University Journal. 17:45-50.
23 Kim, J.M. and K.H. Kim. 2006. Nutrient removal ability by phosphate solubilizing bacteria and effect on crop growth. Exhibition in National Science Fair. [in Korean]
24 Kim, K.H. 2006. Soil Science. Hyangmoonsa. p.313. [n Korean]
25 Kucey, R.M.N. 1988. Effect of penicillium bilaji on the solubility and uptake of P and Micronutrients from soil by wheat. Can. J. Soil. Sci. 68:261-270.   DOI
26 Kim, K.Y., D. Jordan D. and G.A. McDonald. 1997. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium, Biol. Fert. Soils 24:347-352.   DOI   ScienceOn
27 Kim, K.Y., D. Jordan and G.A. McDonald. 1998. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fert. Soils. 26:79-87.
28 Kpomblekou, K. and M.A. Tabatabai. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci. 158:442-453.   DOI   ScienceOn
29 Kuenen, J.G. and W.N. Konigns. 1987. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas putida, and Acinetobacter calcoaceticus (var. lwoffii). J Bacteriol. 163:493-499.
30 Lee, C.W., Y.J. Jung, K.A. Lee, S.L. Choi, Y.G. Kim, and Y.L. Choi. 2004. Isolation and characteristic of the phosphate solubilizing bacteria Klebsiella sp. DA 71-1. J. Life Sci. 14:174-179.   DOI
31 Liu, T.S., L.Y. Lee, C.Y. Tai, C.H. Hung, Y.S. Chang, J.H. Wolfram, R. Rogers, and A.H. Goldstein. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J. Bacteriol. 174: 5814-5819.
32 Mikanova, O., J. Kubat, T. Simon, K. Vorisek, and D. Randova. 1997. Influence of soluble phosphate on P-solubilizing activity of bacteria. Rostlinna-Vyroba-UZPI. 43:421-424.
33 Oh, S.H. and C.S. Lee. 1997. Saving soil and method of fertilization. National Agricultural Cooperative Federation. p.388. [in Korean]
34 Molla, M.A.Z., A.A. Chowdhury, A. Islam, and S. Hoque. 1984. Microbial mineralization of organic phosphate in soil. Plant Soil. 78:393-399.   DOI
35 Nahas, E. 1996. Factors determining rock phosphate solubilization by microorganism isolated from soil. World J. Microb. Biotechnol. 12:18-23.
36 Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters. 170:265-270.   DOI   ScienceOn
37 Park, B.K., J.H. Na, B.H. Hwang, I.J. Lee, K.Y. Kim, and Y.W. Kim. 2005. Effect of phosphate bio fertilizer produced by Enterobacter intermedium on rhizosphere soil properties and lettuce growth. Korean J. Soil Sci. Fert. Vol. 38(1):15-24.   과학기술학회마을
38 Park, J.S. 1992. Crop Physiology. Hyangmoonsa. p.437. [in Korean]
39 Paul, E.A. and Clark, F.E. 1989. Soil Microbiology and Biochemistry. Academic press, New York, USA.
40 Perez, E., M. Sulbaran, M.M. Ball, and L.A. Yarzabal. 2007. Isolation and characterization of mineral phosphatesolubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol. Biochem. 39: 2905-2914.   DOI
41 Richardson, A.E., J.M. Barea, A.M. McNeill, and C. Prigent-Combaret. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 321:305-39   DOI
42 Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339.   DOI   ScienceOn
43 Salih, H.M., A.I. Yonka, A.M. Abdul-Rahem, and B.H. Munam. 1989. Availability of phosphorus in calcareous soil treated with rock phosphate or superphosphate as affected by phosphate dissolving fungi. Plant and Soil. 120:181-185.   DOI
44 Rural Development Administration. 2000. Technical development and practical strategy of environmentally-friendly agriculture. p.368. [in Korean]
45 Ryan P.R., E. Delhaize, and D.L. Jones. 2001. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:527-560.   DOI
46 Sagoe, C.I., T. Ando, K. Kouno and T. Nagaoka. 1998. Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Sci. Plant Nutr. 44:617-625.   DOI
47 Van Schie, B.J., K.J. Hellingwerf, J.P. van Dijken, M.G.L. Elferink, J.M. van Dijl, Z.K. Uo, H.O. Kim, and S.C. Lee. 1985. Improvement of rock phosphate utilization efficiency-Distribution of V. A. mycorrhizae on Cheju island, and isolation and cultivation of rock phosphate solubilizing fungi. Cheju National University Journal. 20:81-92.
48 Seeling, B. and R.J. Zasoski. 1993. Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant Soil. 148:277-284.   DOI
49 Son, H.J., Y.G. Kim, and S.J. Lee. 2003. Isolation, identification and physiological characteristics of biofertilizer resources, insoluble phosphate-solubilizing bacteria. Korean J. Microbiol. 39(1):51-55.   과학기술학회마을
50 Suh, J.S., S.K. Lee, K.S. Kim, and K.Y. Seong. 1995. Solubilization of insoluble phosphates by Pseudomonas putida, Penicillium sp. and Aspergillus niger isolated from Korean soils. J. Korean Soc. Soil Sci. Fert. 28:278-286.
51 Surange, S., A.G. Wollum, N. Kumar and C.S. Nautiyal. 1995. Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can. J. Microbiol. 43:891-894.
52 Suh, J.S. 1994. Study of microbiological use of soil accumulated accumulated phosphorus by refractory phosphate solubilizing bacteria. Chonnam National University. [in Korean]
53 Suh, J.S. and J.S. Kwon. 2008. Characterization of phosphatesolubilizing microorganisms in upland and plastic film house soils. Korean J. Soil Sci. Fert. 41(5):348-353.
54 Suh, J.S. and J.S. Kwon. 2004. Evaluation of nutrient cycling function and application of the phosphate solubilizing microbes. Research of agricultural environment 2004. 911-937.
55 Tao, G.C., S.J. Tian, M.Y. Cai, and G.H. Xie. 2008. Phosphate-solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere. 18(4):515-523.   DOI
56 Tarafdar, J.C. and N. Claasen. 1988. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol. Fert. Soils 5:308-312.
57 Ryan P.R., E. Delhaize, and D.L. Jones. 2001. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:527-560.   DOI
58 Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157:423-47.   DOI
59 Varsha, N. and H.H. Patel. 2000. Aspergillus aculeatus as a rock phosphate solubilizer, Soil Biol. Biochem. 32:559-565.   DOI   ScienceOn
60 Vassilev, N., M. Toro, M. Vassileva, R. Azcon, and J.M. Barea. 1997. Rock phosphates solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Bioresour. Technolo. 61:29-32.   DOI   ScienceOn
61 Vassilev, N. and M. Vassilev. 2003. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl. Microbiol. Biotech. 61:435-440.   DOI
62 Whitelaw, M.A. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv. Agron. 69:99-151.
63 Wu, S.C., Z.H. Cao, Z.G. Li, K.C. Cheung, and M.H. Wong. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 125:155-166.   DOI
64 Yadaf, R.S. and J.C. Tarafdar. 2001. Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biol. Fert. Soils. 34:140-143.   DOI