• Title/Summary/Keyword: insoluble glucan

Search Result 74, Processing Time 0.02 seconds

Physiological Function in vitro of ${\beta}-Glucan$ Isolated from Barley (보리가루에서 분리한 ${\beta}-Glucan$의 생리적 기능성)

  • Oh, Hee-Jung;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.689-695
    • /
    • 1996
  • In order to prove physiological function of ${\beta}-Glucan$ isolated from barley flour by enzymatic method, in vitro experiments simulating the passive membrane transport of gastrointestinal tract were carried out using dialysis membrane. The yield of ${\beta}-Glucan$ from barley flour was $6.2{\%}$ and its constituents were determined to give $81.6{\%}$ total dietary fiber, $72.9{\%}$ soluble dietary fiber, $8.7{\%}$ insoluble dietary fiber, $8.5{\%}$ moisture, $2.5{\%}$ protein and $7.4{\%}$ ash. The water holding capacity of the ${\beta}-Glucan$ preparation was 6 g water/g dry material. The glucose retardation index after 30 minute dialysis was $13.5{\%}$ in the presence of $3{\%}$ ${\beta}-Glucan$. As the dialysis period became longer, the retarding effect toward glucose absorption decreased and the effect was close to zero after 2 hour dialysis. The bile acid retardation index after 30 minute dialysis was 3, 12 and $18{\%}$ in the presence of 1, 3 and $5{\%}$ ${\beta}-Glucan$, respectively. The effect was higher than the glucose retardation index and decreased as the dialysis time elapsed.

  • PDF

Immune-Enhancing Alkali-Soluble Glucans Produced by Wild-Type and Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Lim Ki-Hong;Jang Se-Hwan;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.576-583
    • /
    • 2006
  • The alkali-soluble glucan of the yeast cell wall contains $\beta-(1,3)-$ and (1,6)-D-linkages and is known to systemically enhance the immune system. In the previous study [6], in order to isolate cell wall mutants, a wild-type strain was mutagenized by exposure to ultraviolet light, and the mutants were then selected via treatment with laminarinase $(endo-\beta-(1,3)-D-glucanase)$. The mass of alkali- and water-soluble glucans produced by the mutant was measured to be 33.8 mg/g of the dry mass of the yeast cell. Our results showed that the mutants generated the amount of alkali-soluble glucan 10-fold higher than that generated by the wild-type. Structural analysis showed that the alkali-soluble glucan from the mutants was associated with a higher degree of $\beta-(1,6)-D-linkage$ than was observed in conjunction with the wild-type. Yeast cell wall $\beta-glucan$ was shown to interact with macrophages via receptors, thereby inducing the release of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide. Alkali-soluble $\beta-glucans$, both from water-soluble and water-insoluble glucan, exhibited a higher degree of macrophage activity with regard to both the secretion of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide and direct phagocytosis, than did the positive control ($1{\mu}g$ of lipopolysaccharide).

Characterization of Two Glucans Activating an Alternative Complement Pathway from the Fruiting Bodies of Mushroom Pleurotus ostreatus

  • Kweon, Mee-Hyang;Lim, Wang-Jin;Yang, Han-Chul;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.267-271
    • /
    • 2000
  • Abstract Two glucans (PONGa and PONGb) differing in their anomeric and glycosidic linkage structures were isolated from the water-insoluble materials (PON) of Pleurotus ostreatus basidiocarps, which activated the complement system and were almost soley composed of D-glucose. The isolatIon was achieved by repeated precipitations with ethanol and adsorption on concanavalin A (Con A) of paN suspension in thymol/NaCL Based on methylation analysis. IR, GLC-MS, $^1H,{\;}and{\;}^{13}C-NMR$ spectroscopies, PONGa was found to be a branched a-glucan composed of ${\alpha}-linked$ D-glucopyranose residues and ${\alpha}-linked$ units with 6-branching points, whereas PONGb was a linear ${\beta}-1,3-glucan$ composed mainly of ${\beta}-1,3-linked$ D-glucopyranose residues. The PONGb particles reacted more potently than the PONGa particles as C3 activator in alternative complement hemolysis and crossed-immunoelectrophoresis using anti-human C3, thereby suggesting that the complement activating components of PON were ${\beta}-(13)-glucans rather$ than ${\alpha}-glucan$ components.onents.

  • PDF

Effect of Lactococcus lactis 1370 on the Formation of Artificial Plaque (Lactococcus lactis 1370가 인공치태 형성에 미치는 영향)

  • Chung, Jin;Yim, Sung-Yee;Oh, Jong-Suk
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.77-85
    • /
    • 2000
  • Streptococcus mutans is the most important causative bacteria of dental caries among the oral bacteria. Lactococcus lactis 1370 was isolated from the oral cavity of child. The effect of Lactococcus lactis 1370 on the formation of artificial plaque by Streptococcus mutans was studied. 1. The insoluble substances and bacteria were much more attached on the wall of disposable cuvette in the culture of Streptococcus mutans than in the combined culture of Streptococcus mutans and Lactococcus lactis 1370. 2. The mean weight of produced artificial plaque on the wires in the beaker was 131.7 mg in the culture of Streptococcus mutans only, whereas being reduced to 6.4 mg in the combined culture of Streptococcus mutans and Lactococcus lactis 1370 (p<0.05). The viable cell didn't show the significant difference between them after culturing. 3. When Streptococcus mutans was cultured in the media containing culture supernatant of Lactococcus lactis 1370 cultured in M17 broth containing 0.5% yeast extract and 5% sucrose, the mean weight of produced artificial plaque was 8.0 mg on the wires, whereas being 125.4 mg in the media without culture supernatant of Lactococcus lactis 1370 (p<0.05). The viable cell didn't show the significant difference between them after culturing. 4. When Streptococcus mutans was cultured in the media containing soluble polymer produced by Lactococcus lactis 1370, the mean weight of produced artificial plaque was significantly reduced compared with being cultured in the media without soluble polymer (p<0.05). The viable cell didn't show the significant difference between them after culturing. 5. The soluble polymer produced by Lactococcus lactis 1370 was glucan. 6. The glucan produced by Lactococcus lactis 1370 was water-soluble glucan containing ${\alpha}$-1,6-glucose linkage as the main linkage. These results suggest that the artificial plaque formed by Streptococcus mutans is inhibited by water-soluble glucan produced by Lactococcus lactis 1370.

  • PDF

EFFECT OF UNREACTED RESIN MONOMES ON THE ATIVITY OF CARIOGENIC BACTERIA (미반응 레진단량체가 우식유발성 세균의 활성에 미치는 영향)

  • Park, Seung-Kyu;Kim, Hwa-Sook;You, So-Young;Han, Jin-Ju;Kook, Joong-Ki;Lee, Nan-Young;Lee, Sang-Ho;Lee, Chang-Seop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.684-695
    • /
    • 2003
  • The aim of this study was to investigate the effect of composite resin components on proliferation and glucan synthesis by cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Light curing pit and fissure sealant was chosen for evluation. Specimens were eluted in deionized water for 10 minutes, 1, 12, and 24 hours. Extracts of specimens were diluted into 1/2, 1/4, and 1/8 with addition of BHI broth and BHI-YS. Bacteria were cultured in media included eluted components, and measured optical density($A_{600}$). The following results were obtained 1. 1/4 concentration of elutes for 10 minutes significantly inhibited the proliferation of S. mutans, whereas 1/2, 1/8 concentration of elutes stimulated it. Also, exacts, especially 1/2, 1/4 concentration, for 1 hours stimulated it. But exacts for 12, 24 hours had not effects on the proliferation of S. mutans. 2. 1/4 concentration of elutes for 10 minutes inhibited growth of S. sobrinus, whereas extracts for 1, 12, 24 hours had not effects on the proliferation of S. sobrinuss. 3. Extracts from composite resin stimulated total growth of S. mutans more than growth control group, where as inhibited it of S. sobrinus. 4. Extracts from composite resin, especially 1/4 concentration of it for 10 minutes increased the formation of water insoluble glucan of S. mutans. But elutes for 1, 12, 24 hours, and 1/8 concentration of it for 10 minutes inhibited it. 5. Except 1/4 concentration of elutes for 10 minutes, extracts decreased the formation of water insoluble glucan of S. sobrinus. 6. Total amount of formated glucan was 3-fold higher in S. mutans than in S. sobrinus.

  • PDF

Dietary Fiber and β-Glucan Contents of Sparassis crispa Fruit Fermented with Lactobacillus brevis and Monascus pilosus (유산균 및 홍국균 발효 꽃송이버섯 추출물과 잔사의 식이섬유와 베타 글루칸의 함량)

  • Lim, Chang Wan;Kang, Kyoung Kyu;Yoo, Young-Bok;Kim, Byung Hee;Bae, Song-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1740-1746
    • /
    • 2012
  • Sparassis (S.) crispa is an edible mushroom abundant in dietary fiber and ${\beta}$-glucan. The aim of this study was to prepare extracts and residues of the fruit bodies of S. crispa fermented with Lactobacillus (L.) brevis and Monascus (M.) pilosus and to measure the remaining dietary fiber and ${\beta}$-glucan. Dried powder of S. crispa containing 64.4 g/100 g total dietary fiber (2.6 g/100 g soluble and 61.8 g/100 g insoluble dietary fibers) and 24.0 g/100 g ${\beta}$-glucan was used as the starting material for the extraction. Raw and fermented S. crispa were extracted with hot water and three kinds of aqueous ethanol (50, 70, and 90%, v/v), respectively. A hot water extract from S. crispa fermented with M. pilosus had greater soluble dietary fiber content (19.3 g/100 g) than that from raw S. crispa with 14.6 g/100 g soluble dietary fiber or that from L. brevis-fermented S. crispa with 8.2 g/100 g soluble dietary fiber. The yield of the extract was 16.6% of intial weight of dried S. crispa. After hot water extraction of S. crispa fermented with M. pilosus, residues containing 90.5 g/100 g total dietary fiber (1.3 g/100 g soluble and 89.2 g/100 g insoluble dietary fibers) were obtained, and the yield was 69.6% of intial weight of dried S. crispa. The residue (31.0 g/100 g) contained more ${\beta}$-glucan than raw S. crispa or M. pilosus-fermented S. crispa (24.4 g/100 g). The resulting hot water extract and residue from S. crispa fermented with M. pilosus would be suitable for use in preparing liquid and powdered health functional foods, respectively.

Potential Suppression of Dental Caries by Maltosyl-Mannitol Produced by Bacillus stearothermophilus Maltogenic Amylase

  • Cho Kil-Soon;Shin Sang-Ick;Cheong Jong-Joo;Park Kwan-Hwa;Moon Tae-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.484-486
    • /
    • 2006
  • Maltosyl (G2)-mannitol, produced by the transglycosylation of mannitol with maltotriose by Bacillus stearothermophilus maltogenic amylase, was not found to support lactic acid production by Streptococcus sobrinus NRRL 14555. Furthermore, the synthesis of water-insoluble glucans from maltosyl-mannitol by S. sobrinus NRRL 14555 was much lower than that from xylitol or mannitol. Consequently, these results suggest that maltosyl-mannitol could be used as a noncariogenic sugar substitute in food products.

Effect of Non-starch Polysaccharides and Resistant Starch on Mucin Secretion and Endogenous Amino Acid Losses in Pigs

  • Morel, Patrick C.H.;Melai, J.;Eady, S.L.;Coles, G.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1634-1641
    • /
    • 2005
  • Generally, dietary fibre (DF) includes lignin, non-starch polysaccharides (NSP) and resistant starch (RS). In monogastric species, low levels of dietary fibre in the diet are associated with various diseases and high levels reduce nutrient digestibilities. In this study, the effects of different types and levels of NSP (soluble: $\beta$-glucan, insoluble cellulose) and resistant starch on mucin secretion and endogenous nitrogen and amino acid losses in pigs were investigated. A total of 25 five-week-old weaner pigs (9.5 kg${\pm}$1.5 kg), were randomly allocated to each of five experimental diets. Different levels of purified barley $\beta$-glucan (BG) extract (5 or 10% of $Glucagel^{(R)}$ $\beta$-glucan, providing 4 or 8% of BG in the diet), and resistant starch (RS) (8.3 or 16.6% of Hi-$Maize^{TM}$, providing 5 or 10% RS in the diet) were substituted for wheat starch in a purified diet in which enzymatically-hydrolysed casein was the sole source of protein. The diets were fed for 21 days. No statistically significant difference between treatments (p>0.05) was observed for growth performance and organs weights. No difference in ileal starch digestibility was observed between pigs on the cellulose or $\beta$-glucan diets. However, as the level of resistant starch in the diet increased the ileal starch digestibility decreased (p<0.05). The inclusion of resistant starch in the diet (5 or 10%) did not increase mucin production when compared with the cellulose-only diet. However, as the level of beta-glucan in the diet increased, both crude mucin in the digesta dry matter and per kg dry matter intake increased (p<0.05). Pigs fed the diet containing 8% of beta-glucan had higher endogenous loss flow than those fed the diets including 5 or 10% of resistant starch or 4% of $\beta$-glucan. In conclusion, dietary inclusion of resistant starch increased the level of starch reaching the large intestine without any effect on mucin secretion, or endogenous nitrogen or amino acid losses content in the small intestine. The addition of $\beta$-glucan to a diet containing cellulose increases both mucin secretion and endogenous amino acid and nitrogen losses in the small intestine.

Isolation of High-molecular-weight-compound degrading microorganisms and sulfate reducing Bacteria involved in Composting Process (퇴비화 과정에 관여하는 생체 고분자 분해 미생물 및 황산 환원균의 분리)

  • Lee, Seong-Taek;Lee, Jae-Jeong;Na, Hyun-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.31-37
    • /
    • 1994
  • For a microbiological study of composting process, screening and assay method for biopolymer degrading enzymes and microorganisms were developed and for the study of the possibility of composting in anaerobic state, distribution of sulfate reducing bacteria which plays a final role in anaerobic degradation was investigated. Substrates used for the development of assay methods for biopolymer degradation are ${\beta}-glucan$, xylan, dextran, CMC(carboxy methly cellulose), casein, and collagen. These substrates were made insoluble by a cross-linking agent and linked with dye to make chromogenic substrates. ${\beta}-glucan$ and xylan substrates could substitute congo-red method for screening of polymer degrading microorganisms without damaging the colonies. Sulfate reducing bacteria contained in the sample sludge showed preference to lactic acid, propionic acid, butyric acid and formic acid and could use acetic acid and valeric acid.

  • PDF

Anticariogenic Properties of the Ethanol Extract of Tribuli fructus against Streptococcus mutans (백질려 추출물이 Streptococcus mutans에 대한 항치아우식에 미치는 영향)

  • Lee, Da-Hong;Yu, Hyeon-Hee;Jung, Su-Young;Moon, Hae-Dalma;Kim, Su-Min;Jeon, Byung-Hun;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1148-1153
    • /
    • 2007
  • Streptococcus mutans is considered one of the primary etiologic agents of dental caries. we studied the effect of the ethanol extracts of Tribuli fructus (T. fructus) on the growth, biofilm formation, acid production, adhesion and insoluble glucan synthesis of S. mutans. The ethanol extracts of T. fructus showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 0.025, 0.05, 0.1, 0.2, 0.3, 0.5 mg/ml compared to the control group. In the biofilm assay, the ethanol extracts of T. fructus inhibited formation of biofilm synthesized by S. mutans at the concentration of 0.05 mg/ml. The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 50% at the concentration 0.05 mg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan form sucrose, ethanol extract of T. fructus showed more than 10% inhibition over the concentration of 0.025 mg/ml. Hence, we conclude that T. fructus might be a candidate of anticaries agent. Further studies are necessary to clarify the active constituents of T. fructus responsible for such biomolecular activities.