DOI QR코드

DOI QR Code

유산균 및 홍국균 발효 꽃송이버섯 추출물과 잔사의 식이섬유와 베타 글루칸의 함량

Dietary Fiber and β-Glucan Contents of Sparassis crispa Fruit Fermented with Lactobacillus brevis and Monascus pilosus

  • 임창완 (중앙대학교 식품공학과) ;
  • 강경규 (중앙대학교 식품공학과) ;
  • 유영복 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 김병희 (중앙대학교 식품공학과) ;
  • 배송환 (한경대학교 식품생물공학과)
  • Lim, Chang Wan (Dept. of Food Science and Technology, Chung-Ang University) ;
  • Kang, Kyoung Kyu (Dept. of Food Science and Technology, Chung-Ang University) ;
  • Yoo, Young-Bok (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Byung Hee (Dept. of Food Science and Technology, Chung-Ang University) ;
  • Bae, Song-Hwan (Dept. of Food and Biotechnology, Hankyong National University)
  • 투고 : 2012.10.16
  • 심사 : 2012.10.29
  • 발행 : 2012.12.31

초록

본 연구에서는 식이섬유와 ${\beta}$-glucan이 풍부한 꽃송이버섯을 발효한 후 추출하여 이들 성분의 함량을 보다 증가시킨 추출물과 잔사를 제조하고자 하였다. 이를 위해 열풍 건조한 꽃송이버섯 자실체의 분말을 유산균(L. brevis)과 홍국균(M. pilosus)으로 각각 발효한 후 열수와 수용성 에탄올(50, 70, 90%, v/v)로 추출하여 추출물과 잔사를 제조하고 이들의 수용성, 불용성 및 총 식이섬유와 ${\beta}$-glucan의 함량을 버섯원물의 추출물과 잔사의 각 성분의 함량과 비교하였다. 홍국균 발효 버섯의 총 식이섬유 함량은 74.4 g/100 g으로 버섯원물(64.4 g/100 g)과 유산균 발효 버섯(66.1 g/100 g)의 총 식이섬유 함량에 비해서 유의적으로(p<0.05) 높았다. 버섯원물, 유산균 발효 버섯, 홍국균 발효 버섯의 ${\beta}$-glucan 함량(21.9~24.4 g/100 g) 간에는 유의적인 차이가 없었다. 추출물의 경우, 홍국균 발효 버섯의 열수 추출물에서 총 식이섬유(21.6 g/100 g)와 수용성 식이섬유 함량(19.3 g/100 g)이 가장 높았으며 버섯 원물의 열수 추출물의 총 식이섬유(16.4 g/100 g)와 수용성 식이섬유 함량(14.6 g/100 g)보다도 유의적으로 (p<0.05) 높았다. 홍국균 발효 버섯을 열수 추출하고 남은 잔사의 총 식이섬유 함량은 90.5 g/100 g이었고 이들의 대부분이 불용성 식이섬유로 구성되어 있었으며, ${\beta}$-glucan 함량은 버섯 원물이나 홍국균 발효 버섯보다 높은 31.0 g/100 g이었다. 따라서 본 연구에서 제조한 홍국균 발효 꽃송이버섯의 열수 추출물과 잔사는 각각 액상과 분말 형태의 건강기능식품 및 가공식품 소재로 개발될 수 있을 것으로 기대된다.

Sparassis (S.) crispa is an edible mushroom abundant in dietary fiber and ${\beta}$-glucan. The aim of this study was to prepare extracts and residues of the fruit bodies of S. crispa fermented with Lactobacillus (L.) brevis and Monascus (M.) pilosus and to measure the remaining dietary fiber and ${\beta}$-glucan. Dried powder of S. crispa containing 64.4 g/100 g total dietary fiber (2.6 g/100 g soluble and 61.8 g/100 g insoluble dietary fibers) and 24.0 g/100 g ${\beta}$-glucan was used as the starting material for the extraction. Raw and fermented S. crispa were extracted with hot water and three kinds of aqueous ethanol (50, 70, and 90%, v/v), respectively. A hot water extract from S. crispa fermented with M. pilosus had greater soluble dietary fiber content (19.3 g/100 g) than that from raw S. crispa with 14.6 g/100 g soluble dietary fiber or that from L. brevis-fermented S. crispa with 8.2 g/100 g soluble dietary fiber. The yield of the extract was 16.6% of intial weight of dried S. crispa. After hot water extraction of S. crispa fermented with M. pilosus, residues containing 90.5 g/100 g total dietary fiber (1.3 g/100 g soluble and 89.2 g/100 g insoluble dietary fibers) were obtained, and the yield was 69.6% of intial weight of dried S. crispa. The residue (31.0 g/100 g) contained more ${\beta}$-glucan than raw S. crispa or M. pilosus-fermented S. crispa (24.4 g/100 g). The resulting hot water extract and residue from S. crispa fermented with M. pilosus would be suitable for use in preparing liquid and powdered health functional foods, respectively.

키워드

참고문헌

  1. Shin HJ, Oh DS, Lee HD, Kang HB, Lee CW, Cha WS. 2007. Analysis of mineral, amino acid and vitamin contents of fruiting body of Sparassis crispa. J Life Sci 17: 1290-1293. https://doi.org/10.5352/JLS.2007.17.9.1290
  2. Oh DS, Park JM, Park H, Ka KH, Chun WJ. 2009. Site characteristics and vegetation structure of the habitat of cauliflower mushroom (Sparassis crispa). Kor J Mycol 37: 33-40. https://doi.org/10.4489/KJM.2009.37.1.033
  3. Ohno N, Miura NN, Nakajima M, Yadomae T. 2000. Antitumor 1,3-${\beta}$-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull 23: 866-872. https://doi.org/10.1248/bpb.23.866
  4. Yamamoto K, Kimura T, Sugitachi A, Matsuura N. 2009. Anti-angiogenic and anti-metastatic effects of ${\beta}$-1,3-Dglucan purified from Hanabiratake, Sparassis crispa. Biol Pharm Bull 32: 259-263. https://doi.org/10.1248/bpb.32.259
  5. Kim HH, Lee S, Singh TS, Choi JK, Shin TY, Kim SH. 2012. Sparassis crispa suppresses mast cell-mediated allergic inflammation: Role of calcium, mitogen-activated protein kinase and nuclear factor-${\kappa}B$. Int J Mol Med 30: 344-350. https://doi.org/10.3892/ijmm.2012.1000
  6. Kwon AH, Qiu Z, Hashimoto M, Yamamoto K, Kimura T 2009. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg 197: 503-509. https://doi.org/10.1016/j.amjsurg.2007.11.021
  7. Yoshitomi H, Iwaoka E, Kubo M, Shibata M, Gao M. 2011. Beneficial effect of Sparassis crispa on stroke through activation of Akt/eNOS pathway in brain of SHRSP. J Nat Med 65: 135-141. https://doi.org/10.1007/s11418-010-0475-9
  8. Kawagishi H, Hayashi K, Tokuyama S, Hashimoto N, Kimura T, Dombo M. 2007. Novel bioactive compound from the Sparassis crispa mushroom. Biosci Biotechnol Biochem 71: 1804-1806. https://doi.org/10.1271/bbb.70192
  9. Han SK. 2005. Quality improvement of effective microorganisms (EM) pork produced by using EM. J Korean Soc Food Sci Nutr 34: 734-737. https://doi.org/10.3746/jkfn.2005.34.5.734
  10. KFDA. 2011. General test methods. In Korean Food Standard Codex. Korea Food Drug and Administration, Seoul, Korea.
  11. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  12. Choi CS, Jeon CP. 2009. Red yeast rice industry and green growth. Food Industry and Nutrition 14: 25-32.
  13. Yasuda M, Tachibana S, Kuba-Miyara M. 2012. Biochemical aspects of red koji and tofuyo prepared using Monascus fungi. Appl Microbiol Biotechnol 96: 49-60. https://doi.org/10.1007/s00253-012-4300-0

피인용 문헌

  1. Quality Characteristics of Yellow Layer Cake Added with Sparassis crispa Powder vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.1988
  2. β-Glucan Contents and Anti-wrinkling Effects of Brown Rice Phellinus linteus Mycelium Extracts Fermented with Lactobacillus plantarum vol.14, pp.2, 2016, https://doi.org/10.20402/ajbc.2016.0020
  3. Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515
  4. Antioxidant and Immunological Activities of Sparassis crispa Fermented with Meyerozyma guilliermondii FM vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1398
  5. Preparation of fermentation broth of Sparassis latifolia containing soluble β-glucan using four Lactobacillus species vol.13, pp.1, 2015, https://doi.org/10.14480/JM.2015.13.1.50
  6. Physicochemical components and antioxidant activity of Sparassis crispa mixture fermented by lactic acid bacteria vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.361
  7. Characteristic of mycelial growth of cauliflower mushroom (Sparassis latifolia) using replacement culture with Trichoderma and rDNA analysis in genealogy of crossbreeding strain vol.12, pp.1, 2014, https://doi.org/10.14480/JM.2014.12.1.41
  8. 꽃송이버섯 추출물의 화장품소재로서의 가능성 평가 vol.32, pp.4, 2012, https://doi.org/10.12925/jkocs.2015.32.4.731
  9. 고온성 흑갈색 팽이버섯 신품종 '여름향2호'의 육성 및 특성 vol.16, pp.3, 2012, https://doi.org/10.14480/jm.2018.16.3.192
  10. 대두를 이용한 소이 발효 치즈 개발에 관한 연구 vol.31, pp.6, 2012, https://doi.org/10.9799/ksfan.2018.31.6.811
  11. 경옥고가미방의 베타글루칸, 진세노사이드 함량, 2,2-diphenyl-1-picrylhydrazyl (DPPH) Free Radical 소거 활성 및 단회 투여 독성 연구 vol.31, pp.1, 2021, https://doi.org/10.18325/jkmr.2021.31.1.95
  12. 꽃송이버섯 추출물이 RAW 264.7 세포에서 TNF-α, iNOS, IL-1β 유전자 발현에 미치는 영향 vol.9, pp.1, 2021, https://doi.org/10.15268/ksim.2021.9.1.163