• 제목/요약/키워드: insoles

검색결과 66건 처리시간 0.019초

편평족 노인의 계단 하강 보행 시 아치 지지형 인솔 종류에 따른 족저압력 및 균형성 평가 (Comparison of plantar pressure and COP parameters in three types of arch support insole during stair descent in elderly with flatfoot)

  • 한기훈;배강호;정하곤;하민성;최도열;이중숙;양정옥
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.948-955
    • /
    • 2018
  • 본 연구의 목적은 평발을 가진 여성 노인의 계단 하강 보행 시 일반인솔 및 아치 지지형 인솔을 적용에 따른 족저압력 및 압력중심점 변인들의 차이를 조사하는데 목적이 있다. 족저압력 분석장비(Pedar-X, Novel, Germany)를 사용하여 14명의 평발 노인을 대상으로 3종류(일반인솔, A형 인솔, B형 인솔)의 인솔착용 후 최대족저압력, 평균족저압력, 접촉면적, 압력중심점의 이동거리, 변위 및 최대범위의 평균값을 산출하였으며, 일원변량분석(one-way ANOVA)를 이용하여 인솔 종류간 평균을 비교하였다. 족저 압력 변인 중 최대족저압력은 중족부의 M3, 평균족저압력은 M2, M3, M4 영역에서, 접촉면적은 M2, M3, 그리고 M6 영역에서 통계적으로 유의한 차이를 보였으며, 압력중심점 변인 중 전후축과 좌우축에서 압력중심점의 이동거리에서 통계적으로 유의한 차이를 보였다. 족저압력 평가결과 아치 지지 기능을 가진 인솔을 삽입한 A와 B형 인솔에서 족궁지지 영역인 M3의 최대압력은 B형 인솔과 A형 인솔이 일반인솔과 비교했을 때 높게 나타났다. 좌우축, 전후축 압력중심점의 이동거리는 A형과 B형 인솔 모두 일반 인솔에 비해 짧게 나타났다.

Gait event detection algorithm based on smart insoles

  • Kim, JeongKyun;Bae, Myung-Nam;Lee, Kang Bok;Hong, Sang Gi
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.46-53
    • /
    • 2020
  • Gait analysis is an effective clinical tool across a wide range of applications. Recently, inertial measurement units have been extensively utilized for gait analysis. Effective gait analyses require good estimates of heel-strike and toe-off events. Previous studies have focused on the effective device position and type of triaxis direction to detect gait events. This study proposes an effective heel-strike and toe-off detection algorithm using a smart insole with inertial measurement units. This method detects heel-strike and toe-off events through a time-frequency analysis by limiting the range. To assess its performance, gait data for seven healthy male subjects during walking and running were acquired. The proposed heel-strike and toe-off detection algorithm yielded the largest error of 0.03 seconds for running toe-off events, and an average of 0-0.01 seconds for other gait tests. Novel gait analyses could be conducted without suffering from space limitations because gait parameters such as the cadence, stance phase time, swing phase time, single-support time, and double-support time can all be estimated using the proposed heel-strike and toe-off detection algorithm.

3D printed midsole design according to the sole types of elementary school students

  • Lim, Ho Sun
    • 복식문화연구
    • /
    • 제24권3호
    • /
    • pp.315-323
    • /
    • 2016
  • The present study is intended to study sole types necessary for shoe designs for elementary school students that are in age groups in growth periods, and 3D midsole design utilizing 3D printing technology. This study analyzed data from the 3D measurement of the feet of 1,227 elementary school students aged 7-13 years residing in the capital region conducted as part of the 6th Anthropometry of Size Korea. In addition, 3D midsoles by sole type were designed utilizing a Rhino CAD, and midsole prototypes were output utilizing a Zortrax-M200 3D Printer. Through a cluster analysis of sole shapes by type, sole shapes were classified into three types. Type 1 has small values of foot lengths and foot breadths, with large toe 1 angles and high arch heights. Type 2 has intermediate values of foot lengths and foot breadths, with small toe 1 angles and high arch heights. Type 3 has large values of foot lengths and foot breadths with small toe 1 angles and low arch heights. On reviewing the results of design of 3D midsoles by sole type, it can be seen that the midsoles were designed according to characteristics by sole type. The results of the sole type analysis in the present study are expected to be meaningful as basic data for the development of shoe insoles for elementary school students.

저항센서와자이로센서를이용한새로운보행주기검출시스템의개발및평가 (Development and Evaluation of a New Gait Phase Detection System using FSR Sensors and a Gyrosensor)

  • 안승찬;황성재;강성재;김영호
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.196-203
    • /
    • 2004
  • In this study, a new gait phase detection system using both FSR(Force Sensing Resister) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the posterior aspect of a shoe. An algorithm was also developed to determine eight different gait transitions among four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was compared with the conventional gait phase detection system using only FSR sensors in various gait experiments such as level walking, fore-foot walking and stair walking. In fore-foot walking and stair walking, the developed system showed much better accuracy and reliability to detect gait phases. The developed gait phase detection system using both FSR sensors and a gyrosensor will be helpful not only to determine pathological gait phases but to apply prosthetics, orthotics and functional electrical stimulation to patients with gait disorders.

Development of a Portable Gait Phase Detection System for Patients with Gait Disorders

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권3호
    • /
    • pp.145-150
    • /
    • 2005
  • A new gait detection system using both FSR (force sensing resistor) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the heel of a shoe. An algorithm was also developed to determine eight different gait transitions during four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was evaluated from nine heathy mans and twelve hemiplegic patients. Healthy volunteers were asked to walk in various gait patterns: level walking, fore-foot walking and stair walking. Only the level walking was performed in hemiplegic patients. The gait detection system was compared with a optical motion analysis system and the outputs of the FSR sensors. In healthy subjects, the developed system detected successfully more than $99\%$ for both level walking and fore-foot walking. For stair walking, the successful detection rate of the system was above$97\%$. In hemiplegic patients, the developed system detected approximately 98% of gait transitions. The developed gait phase detection system will be helpful not only to determine pathological gait phases but also to apply prosthetics, orthotics and functional electrical stimulation for patients with various gait disorders.

Evaluation of Ergonomic Performance of Medical Smart Insoles

  • Yi, Jae-Hoon;Lee, Jin-Wook;Seo, Dong-Kwon
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권2호
    • /
    • pp.215-223
    • /
    • 2022
  • Objective: This study was to resolve the limitations of the experimental environment and to solve the shortcomings of the method of measuring human gait characteristics using optical measuring instruments. Design: A cross-sectional study. Methods: Fifteen healthy adults without a history of orthopedic surgery on the lower extremities for the past 6 months were participated. They were analyzed gait variables using the smart guide and the 3D image analysis at the same time, and their results were compared. Visual-3D was used to calculate the analysis variables. Results: The reliability and validity of the data according to the two measuring instruments were found to be very high; gait speed(0.85), cycle time(0.99), stride time of both feet(0.98, 0.97) stride legnth of both feet(0.86, 0.88) stride per minute of both feet(0.99, 0.96), foot speed of both feet(0.90, 0.91), step time of both feet(0.77, 0.71), step per minute(0.72, 0.74), stance time of both feet(0.96, 0.97), swing time of both feet(0.93, 0.79), double step time(0.81), initial double step time(0.84) and terminal step time(0.76). Conclusions: In the case of the smart insole, which measures human gait variables using the pressure sensor and inertial sensor inserted in the insole, the reliability and validity of the measured data were found to be very high. It can be used as a device to replace 3D image analysis when measuring pathological gait.

Preliminary Study on the Comparison of Calcaneus Taping and Arch Taping Methods for Flexible Flatfoot Subjects

  • Jinteak Kim;Byeongsoo Kim;Jongduk Choi
    • 한국전문물리치료학회지
    • /
    • 제30권4호
    • /
    • pp.281-287
    • /
    • 2023
  • Background: The flexible flatfoot is characterized by a flattening of the foot arch due to excessive bodyweight. The use of shoe insoles or taping methods has been identified as effective in realigning the navicular or calcaneus bones and addressing supination in pronated feet. Objects: This study aimed to analyze the difference between the arch taping attachment method, introduced in a previous study, and a novel taping method designed to provide support to the inner aspect of the heel bone in cases of flexible flatfoot. Methods: A navicular drop test was performed to discriminate flexible flatfoot. To analyze the differences in pressure distribution during walking for each taping method, the subjects underwent testing in the barefoot state with no attachments. The procedure included a sequence of arch taping and heel taping. Subsequent analysis of pressure distribution during walking utilized the GaitRite® system (GAITRite Gold, CIR Systems Inc.). Results: Arch taping and calcaneus taping significantly reduced the integrated pressure over time and peak pressure on the medial side of the midfoot for both feet compared to the barefoot state. Conclusion: The findings of this study suggest that supporting the inside of the heel through calcaneus taping, without direct stimulation to the longitudinal arch and navicular bone, is an effective intervention for flexible flatfoot.

보행 시 농작업 종사자들의 슬관절 퇴행성 등급에 따른 지면반력 특성 분석 (Analysis of the Characteristics of Ground Reaction Force According to the Level of Knee Osteoarthritis During Gait)

  • 이경일;이철갑;홍완기;김민
    • 한국운동역학회지
    • /
    • 제25권4호
    • /
    • pp.393-399
    • /
    • 2015
  • Objective : This study was conducted with an aim to use it as basic data for developing assistive devices, such as insoles that can suppress the progress of degenerative diseases and strategies, to improve early degenerative diseases by assessing walking characteristics of farm workers who were classified as KL-grade in the perspective of motor mechanics. Method : 38 male and female adults who complained of knee joint pain for more than six months were selected, and they were classified according to KL-grade. KL-grade was assessed by an orthopaedic specialist and an occupational environment health specialist. Filming equipment (FX-1, CASIO, Japan) and a ground reaction force system (AMTI OR6, AMTI, USA) were used to identify ground reaction force characteristics, and WOMAC was used for a pain rating scale. Results : There was a difference between the right and left side (axis-X) according to KL-grade, and when the grade was higher, the internal ground reaction force was also higher. Changes in COP were not affected by KL-grade of the knee joint, but it tended to increase as the grade increased. There were differences in the time required for limb support while walking according to the grades, and when the grade was higher, walking was more inefficient with long braking force and short propulsion forces. Also, pain rating scale, the right and left side, and COP changes while in support phase were related. Conclusion : There was a partial, statically significant difference in KL-grade and ground reaction force occurring during the support phase, and there were differences in ground reaction forces according to the grades of degenerative arthritis in the knee joint, indicating that this study is worthy as basic data for future studies.

종족궁 내측아치 지지에 따른 균형능력 분석 (Medial Longitudinal Arch Balanced Analysis of the Calibration)

  • 김선칠;임철
    • 한국방사선학회논문지
    • /
    • 제8권2호
    • /
    • pp.51-56
    • /
    • 2014
  • 신체의 이동과 정지 시 동적 안정성과 균형성에 영향을 미치는 인솔에 대해 분석하였다. 특히 종족궁의 아치를 인위적으로 서서 체중을 가한 상태와 같은 평상시와 동일한 상태로 지속적으로 지지하였을 경우에 개별적인 균형능력의 변화를 추적하였다. 정상적인 신체 조건과 발모양을 유지하는 20대 남녀 각 10명씩 20명을 대상으로 종족궁 내측아치를 측정하여 아치를 지지하는 인솔을 개별적으로 제작하였으며, Tetrax 균형성 평가 장비를 이용하여 COP의 변위 패턴과 힘점의 이동거리를 착용 전, 후 비교하였다. 아치를 지지하는 인솔을 착용한 실험군이 균형능력 평가에서 약 22% 정도 상승되는 결과를 나타내었다. 본 비교 실험을 통해 종족궁의 내측아치를 지지하는 인솔 착용이 신체의 균형능력을 향상시키는데 도움이 되는 것으로 나타났다.

족저압력분석을 활용한 테니스화 기능성평가 (Functional Evaluation of Tennis Shoes Using Foot-Pressure Distribution)

  • 박승범;이중숙
    • 한국운동역학회지
    • /
    • 제18권4호
    • /
    • pp.89-97
    • /
    • 2008
  • 본 연구의 목적은 테니스화의 종류에 따른 주행 특성 및 테니스 동작 수행 시 족저압력분석 방법을 활용하여 테니스화의 기능성을 평가하는데 있다. 하지의 상해가 없고 정상적인 보행동작을 수행하는 남자 대학생 10명을 선정하여 4종류 모델의 테니스화를 대상으로 직선주행, $45^{\circ}$ 방향전환주행, 포핸드 스트로그, 백핸드 스트로그 동작 시 족저압력을 측정한 후 COP(renter of pressure)경로, 평균족저압력, 최대족저압력, 최대지면반력을 분석하였다. 분석결과 직선달리기 동작 시 족저압력 분석결과 모든 제품이 우수한 것으로 분석되었고 통계적으로 유의미한 차이는 없었으며, $45^{\circ}$ 방향전환달리기동작, 포핸드 스트로그동작, 백핸드 스트로그 동작 시 최대지면반력과 최대족저압력 그리고 평균족저압력을 종합적으로 분석해 본 결과 통계적으로 유의미한 차이는 없었으나, C>A>B>D> 순으로 테니스화의 기능성이 우수한 것으로 분석되었다.