Streefland(Elbers, 2003)는 네덜란드에서 11세에서 13세 사이의 초등학생들을 대상으로 하는 탐구-집단(community of inquiry)의 구성과 활동에 관한 연구를 통하여 지식을 구성하는 과정에 학생들이 참여할 수 있도록 교사가 도울 수 있는 방법에 대한 해결책을 제시하고자 했다. Goos(2004)는 오스트레일리아의 고등학교 3학년 수학교실에서는 당연한 것으로 여겨진 탐구 문화를 고등학교 2학년 교실에서 교사가 어떻게 형성시키는지를 관찰과 인터뷰를 통하여 분석하였다. 한국에서는 대학입시 제도를 포함한 다양한 문제점들로 인하여 고등학교 학생들을 대상으로 하는 탐구-중심 수업에서 교사의 역할과 관련된 체계적인 연구는 거의 없었다. 본 연구에서는 과학고등학교 학생들을 대상으로 하는 탐구-중심 수업의 활성화를 위한 교사의 역할에 대하여 논의 하고자 한다. 이를 위하여 탐구-중심 수업 모델을 개발하고, 개발된 탐구-중심 수업 모델을 바탕으로 소집단별로 문제를 선정하고 해결하면서 학생 스스로 수학적인 활동을 할 수 있도록 안내하는 조력자로서의 교사의 역할에 관하여 탐색한다.
Goos(2004) introduced educational researchers' demand for change on the way that mathematics is taught in schools and the series of curriculum documents produced by the National council of Teachers of Mathematics. The documents have placed emphasis on the processes of problem solving, reasoning, and communication. In Korea, the national curriculum documents have also placed increased emphasis on mathematical activities such as reasoning and communication(1997, 2007).The purpose of this study is to analyze the impact of inquiry-oriented instruction with guided reinvention on students' mathematical activities containing communication and reasoning for science high school students. In this paper, we introduce an inquiry-oriented instruction containing Polya's plausible reasoning, Freudenthal's guided reinvention, Forman's sociocultural approach of learning, and Vygotsky's zone of proximal development. We analyze the impact of mathematical findings from inquiry-oriented instruction on students' mathematical activities containing communication and reasoning.
In this paper, inquiry-oriented mathematics instruction was suggested as a teaching method to foster mathematical creativity. And it is argued that inquiry learning assist students to explore the mathematical problem actively and thus participate in mathematical activities like mathematicians. Through inquiry activities, the students learn mathematical ideas and develop new and creative mathematical ideas. Although creativity is often viewed as being associated with exceptional ability, for mathematics teacher who want to develop students' mathematical creativity, it is productive to view mathematical creativity as a mathematical ability that can be fostered in general school education. And also, both teacher and student have to think that they can develop mathematical ideas by themselves. That is very important to foster mathematical creativity in the mathematics class.
수학적 탐구 학습은 학생들로 하여금 흥미로운 문제를 적극적으로 탐구함으로써 수학적 내용을 학습할 수 있고 탐구하는 과정에서 창의성이 계발될 수도 있다. 탐구 활동이 창의성을 개발시킬 수 있다는 점은, 학생들이 어떤 완성된 형태로서 수학을 암기하고 수학문제를 해결하는 것이 아니라, 수학 과제를 탐구하는 과정에서 창의적인 아이디어가 산출될 수 있다는 것이다. 이러한 점에서 수학 학습 활동에 있어서 수학적 탐구의 과정이 반드시 필요하다고 본다. 평행사변형의 넓이 공식을 도입할 때, 탐구의 과정으로 지도한다는 의미는 직사각형의 넓이 공식을 이미 알고 있기 때문에 평행사변형을 직사각형으로 어떻게 만들 것인가 하는 탐구의 과정을 반드시 거쳐야 한다는 것이다. 따라서 본 연구에서는 탐구 학습을 통한 넓이의 지도가 넓이에 관한 수학성취도에 어떤 효과를 미치는지를 알아 보고 넓이 공식의 기억과 유도 과정에 영향을 주는지를 실험연구를 통하여 분석하였다.
During the past decades, there has been a fundamental change in the objectives and nature of mathematics education, as well as a shift in research paradigms. The changes in mathematics education emphasize learning mathematics from realistic situations, students' invention or construction solution procedures, and interaction with other students of the teacher. This shifted perspective has many similarities with the theoretical . perspective of Realistic Mathematics Education (RME) developed by Freudental. The RME theory focused the guide reinvention through mathematizing and takes into account students' informal solution strategies and interpretation through experientially real context problems. The heart of this reinvention process involves mathematizing activities in problem situations that are experientially real to students. It is important to note that reinvention in a collective, as well as individual activity, in which whole-class discussions centering on conjecture, explanation, and justification play a crucial role. The overall purpose of this study is to examine the developmental research efforts to adpat the instructional design perspective of RME to the teaching and learning of differential equation is collegiate mathematics education. Informed by the instructional design theory of RME and capitalizes on the potential technology to incorporate qualitative and numerical approaches, this study offers as approach for conceptualizing the learning and teaching of differential equation that is different from the traditional approach. Data were collected through participatory observation in a differential equations course at a university through a fall semester in 2003. All class sessions were video recorded and transcribed for later detailed analysis. Interviews were conducted systematically to probe the students' conceptual understanding and problem solving of differential equations. All the interviews were video recorded. In addition, students' works such as exams, journals and worksheets were collected for supplement the analysis of data from class observation and interview. Informed by the instructional design theory of RME, theoretical perspectives on emerging analyses of student thinking, this paper outlines an approach for conceptualizing inquiry-oriented differential equations that is different from traditional approaches and current reform efforts. One way of the wars in which thus approach complements current reform-oriented approaches 10 differential equations centers on a particular principled approach to mathematization. The findings of this research will provide insights into the role of the mathematics teacher, instructional materials, and technology, which will provide mathematics educators and instructional designers with new ways of thinking about their educational practice and new ways to foster students' mathematical justifications and ultimately improvement of educational practice in mathematics classes.
The purpose of this study through ethnographic inquiry is to describe how an elementary teacher teaches mathematics with understanding. The ways that teachers'beliefs affect instructional activities, what means understanding from the view of cognitive psychology, and ethnographic research tradition were reviewed to anchor theoretical background of this study. A third-grade teacher and his 45 students were selected in order to capture vivid and thick descriptions of the teaching and learning activities of mathematics. Three major sources of data, that is, participant-observation with video taping, formal and informal interviews with the teacher and his students, and a variety of official documents were collected. These data were analyzed through two phases: data analysis in the field and after the fieldwork. According to data analysis, ‘teaching mathematics with understanding’ was identified as the teachers central belief of teaching mathematics. In order to implement his belief in teaching practices, the teacher made use of three strategies: ⑴ valuing individual student's own way of understanding, ⑵ bring students' everyday experiences into mathematics classroom, and ⑶ lesson objectivies stated by students. It is suggested for future research that concrete and specific norms of mathematics classroom for the improvement of mathematics understanding are needed to be identified and that experienced and skillful teachers' practical knowledge should be incorporated with theories of teaching mathematics and necessarily paid more attention by mathematics educators.
This paper reports on the main results of 3 study that compared students' beliefs, skills, and understandings in an innovative approach to differential equations to more conventional approaches. The innovative approach, referred to as the Realistic Mathematics Education Based Differential Equations (IODE) project, capitalizes on advances within the discipline of mathematics and on advances within the discipline of mathematics education, both at the K-12 and tertiary levels. Given the integrated leveraging of developments both within mathematics and mathematics education, the IODE project is paradigmatic of an approach to innovation in undergraduate mathematics, potentially sewing as a model for other undergraduate course reforms. The effect of the IODE projection maintaining desirable mathematical views and in developing students' skills and relational understandings as judged by the three assessment instruments was largely positive. These findings support our conjecture that, when coupled with careful attention to developments within mathematics itself, theoretical advances that initially grew out research in elementary school classrooms can be profitably leveraged and adapted to the university setting. As such, our work in differential equations may serve as a model for others interested in exploring the prospects and possibilities of improving undergraduate mathematics education in ways that connect with innovations at the K-12 level
본 연구에서는 평면도형의 넓이에 대한 교사의 교수학적 내용 지식(PCK)을 설문지와 수업 관찰을 통해서 분석하였다. 연구 결과, 다음과 같은 4가지 결론을 얻을 수 있다. (1) PCK의 '수학 내용 지식' 영역에서 교사는 넓이의 개념, 넓이와 길이의 속성 구분을 정확히 이해하고 배열구조를 지도의 대상으로 인식하여야 한다. (2) PCK의 '수학과 교수 방법 및 평가에 대한 지식' 영역에서 교사는 교과 목표를 넓이의 개념 이해와 공식의 이해를 균형적으로 설정하고 평가해야 한다. (3) PCK의 '수학 학습에 대한 학생 이해 지식' 영역에서 교사는 설명 위주의 오류수정 보다 넓이의 개념의 이해에 대한 활동을 제시해야 한다. (4) PCK의 '수학과 수업 상황에 대한 지식' 영역에서 교사는 교과서에 대한 주체적 의식을 가지고 교과서의 활동을 보완하여야 한다.
본 논문은 세 명의 초임교사들의 수학 수업에 나타난 교수학적 내용 지식을 수학내용지식, 학생이해지식, 교수법에 대한 지식이라는 측면에서 상세히 분석하였다. A교사는 부진아였던 학생 시절의 영향을 받아 구체물을 통한 개념 중심의 수업을 구현하고자 하였고, B교사는 수학자처럼 자신만의 사다리꼴의 넓이를 구해보는 탐구 중심의 수업을 구현하였으며, C교사는 실생활 중심 수업을 하였다. 세 명 교사들의 수학 수업에 나타난 교수학적 내용 지식은 구현하려고 하는 수업의 형태에 따라 상당한 차이를 보였다. 본 논문은 세 교사의 수학 수업에 대한 면밀한 분석을 통해 초임교사의 수학과 수업 전문성을 신장하기 위한 시사점을 제공하고자 한다.
제7차 교육과정은 수학과 교수-학습의 중심 원리로 구성주의 이론을 들고 있다. 그리고 학습방법 면에서도 탐구 학습, 자기 주도적 학습, 협동 학습을 통해서 정말 쉬우면서도 재미있는 활동 중심의 수업이 되도록 교과서를 구성하고 있는데 이러한 교과서 편찬 방향이나 교수-학습 방법도 구성적 방법에 그 뿌리를 두고 있다. 이러한 구성주의적 요소들이 투입된 교수-학습 방법은 관심 있는 교사들에 의해 이미 다양하게 이루어지고 있다. 그들에게 수업 과정의 단계화, 지식 구성의 위계화를 이루는 데 도움을 주고, 교수-학습 방법의 기준이 될 교수-학습 모델을 제시할 필요가 있다. 또한 이 모델을 적용한 수업 사례를 들어 지식의 구성 과정을 살펴봄으로써 모델의 적용 과정을 이해하도록 하여야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.