• Title/Summary/Keyword: inquiry-based approach

Search Result 105, Processing Time 0.021 seconds

Development and Effect of Differentiated Open Inquiry Guide Materials for Elementary Students Applying a Brain-based Evolutionary Approach (뇌기반 진화적 접근법을 적용한 초등학생 수준별 자유탐구 안내자료 개발 및 효과)

  • Yim, La-Mi;Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.3
    • /
    • pp.233-253
    • /
    • 2018
  • Since open inquiry of science was formally introduced at the 2007 Revised Science Curriculum Course, the purpose and effect of it has been positively evaluated, and it is underlined continuously until the revised science education course in 2015. However, through many previous studies, there is still a lack of awareness of open inquiry of both students and teachers in the field, and it was revealed they are continually appealing confusion and difficulties. Therefore, in this research, we analyzed the causes that make it difficult to execute open inquiry, and developed differentiated open inquiry guide materials that can contribute to the realization of teachers and students. They were developed by the brain-based evolutionary approach to provide students with authentic science. The brain-based evolutionary approach is reflecting the evolutionary attributes and the brain functions associated activities of scientists. It was revealed that, in the same way as the pilot test results, the usefulness of the differentiated guide materials were very high, and there was a statistically significant difference in the science attitude. It was found that the application of the brain-based evolutionary approach had positively influenced the stage of determining the inquiry themes, and self-confidence that could be able to do as a scientist. Analysis of top and sub group types on the basis of inquiry ability showed that both groups are improved at science attitude by the differentiated guide materials. There was a positive effect on change in the self-perception of scientific creativity. We were able to see a positive change in the post survey for open inquiry-efficacy. The developed differentiated open inquiry guide materials contributed to the improvement of open inquiry-efficacy for both the teacher and student.

Analyses on Elementary Students' Behavioral Domain in Free Science Inquiry Activities Applying a Brain-Based Evolutionary Approach (뇌 기반 진화적 접근법을 적용한 초등학교 학생의 과학 자유탐구에서 행동 영역 분석)

  • Kim, Jae-Young;Lim, Chae-Seong;Baek, Ja-Yeon
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.3
    • /
    • pp.579-587
    • /
    • 2014
  • In National Curriculum of Science revised in 2007, 'Free Inquiry' was newly introduced to increase student's interest in science and to foster creativity by having students make their own questions and find answers by themselves. The purpose of the study was to analyze characteristics deployed in the processes of elementary school students' free inquiry activities applying a brain-based evolutionary science teaching and learning principles. For this study, 106 the fifth grade students participated, and they performed individually free inquiry activities according to a brain-based evolutionary approach. In order to characterize the diversifying, estimating-evaluating-executing, and extending-applying activities in behavioral domain, the free inquiry diary constructed by the students, observations by the researcher, and interviews with the students were analyzed both quantitatively and qualitatively. The major results of this study were as follows: First, the students preferred basic inquiry process skills and the majority of the students selected observation as a major approach of their inquiry. The reason was found to be that they were accustomed to only typical basic inquiry skills which is frequently presented at textbooks and regular instruction and didn't have appropriate experience for using relevant integrative inquiry skills. Second, most of the methods diversified and selected by the students were confined to descriptive explanation rather than causal one. Third, both of the science attitude and academic achievement were associated with the number of diversified methods and the selection of appropriate method. Based on these findings, implications for supporting domain novices in inquiry learning environments are advanced.

Elementary School Students' Perceptions on Free Science Inquiry Activities Applying a Brain-Based Evolutionary Approach (뇌기반 진화적 접근법에 따른 과학 자유탐구에 대한 초등학교 학생의 인식)

  • Baek, Ja-Yeon;Lim, Chae-Seong;Kim, Jae-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.1
    • /
    • pp.109-122
    • /
    • 2015
  • In National Curriculum of Science revised in 2007, free inquiry was newly introduced to increase student's interest in science and to foster creativity by having students make their own curiosity questions and find answers by themselves. The purpose of this study is to analyze elementary school students' perceptions on free science inquiry activities applying a brain-based evolutionary approach. For this study, 106 the fifth grade students participated, and then completed a questionnaire on free inquiry activities according to a brain-based evolutionary science teaching and learning principles. The students performed a series of steps of the Diversifying, Estimating-Evaluating-Executing, and Furthering activities in each of Affective, Behavioral, and Cognitive domains (ABC-DEF approach) and constructed their own free inquiry diary, then the observations by the researcher and interviews with the students were analyzed both quantitatively and qualitatively. The major results of the study were as follows: First, the majority of the students perceived the each domain and step positively although a few of them perceived negatively. The reasons perceived as negatively were categorized into two; preference dimension of like or dislike and ability dimension of metacognitive or self-reflective capacity. Also, they perceived the free inquiry experience in the form of ABC-DEF as helpful to understand the nature of scientists' scientific activities. Based on these findings, implications for supporting authentic inquiry in school science are discussed.

Teaching Strategy for Effective Environment Education through Inquiry Approach (탐구학습을 통한 효율적인 환경교육 지도 방안)

  • 최경희
    • Hwankyungkyoyuk
    • /
    • v.13 no.2
    • /
    • pp.114-126
    • /
    • 2000
  • The purpose of this study is to identify the theory of inquiry and to suggest an example of teaching/learning strategy through inquiry for effective environmental education. This study was based on the review of literature in the area of background of inquiry, inquiry in school subjects-social science, science, and environment and activities for inquiry. The teaching/learning strategy which was developed in this study included several inquiry activities focusing on recent social issue. And it can be used in environmental class.

  • PDF

Pre-Service Science Teachers' Understanding and Views of Argument-Based Inquiry Approach (논의 중심 과학 탐구에 대한 예비과학교사의 이해와 인식)

  • Choi, Aeran
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.658-666
    • /
    • 2014
  • This study was designed to explore pre-service secondary science teachers' understanding and views of argument-based inquiry approach. Participants were 17 pre-service secondary science teachers enrolled in chemistry curricular materials and teaching methods course for majors in the college of education at a university in Seoul. Main data sources included each student responses to an open ended survey and individual interviews. Data analyses indicated that the pre-service teachers had very limited and biased understanding on scientific inquiry at the beginning of the semester. While the pre-service teachers understood that scientific inquiry should be an essential component of science teaching, a few pre-service teachers mentioned 'argumentation' or 'discussions' when they defined what scientific inquiry is. The majority of the pre-service teachers mentioned that science should be taught through scientific inquiry since science is inquiry itself. However, the pre-service teachers expressed several potential barriers and their concerns on implementing argumentation in scientific inquiry. While they concerned about students' lack of participation at the beginning of the semester, they concerned more about the teachers' ability of leading student argumentation at the end of the semester.

The Effects of Science Writing Heuristic Class on the Metacognition and Scientific Creativity (탐구적 과학 글쓰기 활용 수업이 메타인지와 과학적 창의성에 미치는 효과)

  • Lee, Eun-A;Kim, Young-Gwon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.1
    • /
    • pp.54-63
    • /
    • 2014
  • This study explored the effect of using the inquiry-based science writing heuristic approach in class on metacognition and scientific creativity to enhance the ability of solving problems in science classrooms of elementary students. The results of this study were as follows. First, the science writing heuristic had a positive influence on the usage of metacognition necessary for learners to solve the problem with science. Second, the science writing heuristic contributed to the improvement of scientific creativity. In the process of inquiry-based approach, learners used scientific knowledge to come up with ideas and produce outcomes, therefore they could seek sanswers to scientific problems for themselves. Third, the science writing heuristic produced a positive awareness of science process skill because learners had more opportunities to think on their own than an existing passive class. In conclusion, this study found that the inquiry-based science writing heuristic approach encouraged learners to do inquiring activities in school classrooms, therefore contributing to the application of metacognition and the improvement of scientific creativity.

Analyses on Elementary Students' Cognitive Domain in Free Science Inquiry Activities Applying a Brain-Based Evolutionary Approach (뇌 기반 진화적 접근법을 적용한 초등학교 학생의 과학 자유탐구에서 인지적 영역 분석)

  • Baek, Ja-Yeon;Lim, Chae-Seong;Kim, Jae-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.4
    • /
    • pp.773-783
    • /
    • 2014
  • In National Curriculum of Science revised in 2007, the Free Inquiry was newly introduced to increase students' interest in science and to foster creativity by having students make their own question and find answer by themselves. The purpose of the study was to analyze characteristics, in cognitive domain, appeared in the processes of performing the Free Inquiry activities applying a brain-based evolutionary science teaching and learning principles. For this study, 106 fifth grade students participated, and they performed individually Free Inquiry activities. In order to characterize of the diversifying, estimating-evaluating-executing, and extending-applying activities in cognitive domain (C-DEF), the Free Inquiry diary constructed by the students, observations by a researcher, and interviews with the students were analyzed both quantitatively and qualitatively. The major results of this study were as follows: First, at C-D step, many students (71.5%) had difficulty in searching the meanings of their results and the contents of interpretations were at the level of simple description of their results. A few students (15.2%) derived interpretations based on causal relationships between specific variable and result. Also, the tendency that the numbers of interpretation about meaning of their results were increased as the scores of science attitude and achievement was appeared. Second, at C-E step, the students showed tendency of considering facts exactly explaining inquiry topic and being appliable to daily life rather than objectivity or accuracy of scientific knowledge. Third, at C-F step, there were three types of extension and application: simple repetition (8.2%), extension (64.0%), and upward application (17.6%) types. Based on these findings, implications for supporting appropriate interpretation, evaluation, and application of inquiry results are discussed.

A Study on the Mathematical Problem Solving Teaching based on the Problem solving approach according to the Intuitive and the Formal Inquiry (직관적·형식적 탐구 기반의 문제해결식 접근법에 따른 수학 문제해결 지도 방안 탐색)

  • Lee, Daehyun
    • Journal for History of Mathematics
    • /
    • v.32 no.6
    • /
    • pp.281-299
    • /
    • 2019
  • Mathematical problem solving has become a major concern in school mathematics, and methods to enhance children's mathematical problem solving abilities have been the main topics in many mathematics education researches. In addition to previous researches about problem solving, the development of a mathematical problem solving method that enables children to establish mathematical concepts through problem solving, to discover formalized principles associated with concepts, and to apply them to real world situations needs. For this purpose, I examined the necessity of problem solving education and reviewed mathematical problem solving researches and problem solving models for giving the theoretical backgrounds. This study suggested the problem solving approach based on the intuitive and the formal inquiry which are the basis of mathematical discovery and inquiry process. And it is developed to keep the balance and complement of the conceptual understanding and the procedural understanding respectively. In addition, it consisted of problem posing to apply the mathematical principles in the application stage.

Argument Structure in the Science Writing Heuristic (SWH) Approach

  • Choi, Ae-Ran
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.3
    • /
    • pp.323-336
    • /
    • 2010
  • The purpose of this study was to evaluate students' written arguments embedded in scientific inquiry investigations using the Science Writing Heuristic (SWH) approach. Argument components defined in this study are questions, claims, questions-claims relationship, evidence, claims-evidence relationship, multiple modal representations, and reflection. A set of criteria for evaluating each argument component was developed to evaluate writing samples of students from college freshman general chemistry laboratory classes. Results indicate that students produced, on average, moderate to powerful questions, claims, and evidence. They also constructed reasonable questions-claims relationship and claims-evidence relationship. Compared to other component scores, the average score for reflection was relatively low. Overall, the average Total Argument score was 21.4 out of a possible 36, that is, the quality of the written arguments using the SWH approach during a series of inquiry-based chemistry laboratory investigations was moderate to powerful. The findings of this study suggest that students, on average, developed reasonable scientific arguments generated as part of scientific inquiry. In other words, students are capable of putting together reasonable arguments as they participate in inquiry-based laboratory classrooms.

Effects of an Engineering-Focused STEAM Program Based on the Project Approach for Young Children on Their Scientific Inquiry Ability, Mathematical Problem-Solving Ability, and Creativity (유아 대상 프로젝트 접근법 기반 공학적 STEAM 프로그램이 유아의 과학적 탐구능력, 수학적 문제해결력, 창의성에 미치는 효과)

  • Kwangjae Yu;Jihyun Kim
    • Korean Journal of Childcare and Education
    • /
    • v.19 no.4
    • /
    • pp.29-52
    • /
    • 2023
  • Objective: This research aims to examine the effect of a young children's engineering-focused STEAM program based on the project approach - a program that constructs components aligned with children's interests in their play through an engineering design process - on their scientific inquiry ability, mathematical problem-solving ability, and creativity. Methods: In this research, 42 five-year-old children from a public kindergarten in S district, I city, were randomly divided into experimental and comparative groups, each with 21 children. The engineering-focused STEAM program was conducted from April 18 to June 10, 2022, with the experimental group exploring the 'car' theme and the comparison group focusing on a different theme. The study employed an independent sample t-test and analysis of covariance(ANCOVA), using the pretest as a covariate to control variables. Results: The children-selected 'cars' themed engineering-focused STEAM program was effective in enhancing their scientific inquiry ability, mathematical problem-solving ability and creativity. Conclusion/Implications: The engineering-focused STEAM program, which emerges from young children's interesting daily play, had positive effects on enhancing their scientific inquiry ability, mathematical problem-solving ability, and creativity. This research can serve as fundamental data for developing education programs focused on engineering within the STEAM framework, guided by children's emergent play.