• Title/Summary/Keyword: inquiry investigation

Search Result 141, Processing Time 0.022 seconds

An Analysis of Inquiry Area in the Chemistry(II) Textbooks by the Inquiry Elements Based on the 7th Science Curriculum (제7차 과학교육과정의 탐구 요소들에 의한 화학(II) 교과서의 탐구 영역 분석)

  • Kang, Dae-Ho;Jeong, Soo-Goon;Koo, In-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.645-658
    • /
    • 2003
  • This study was carried out to analyze inquiry area of the chemistry (II) textbooks which were published by the 7th curriculum. The study attempts to analyze the degree to which chemistry (II) textbooks reflected the guidelines of the 7th science curriculum and propose educational suggestions for the inquiry learning. The analysis of the inquiry area was carried out based on the suggested inquiry elements of the 7th science curriculum. Overall, for the analysis of inquiry elements, basic inquiry elements except classifying suggested by the 7th science curriculum were well reflected on the textbooks. However, for the integrated inquiry elements, interpreting data takes almost half of the total integrated inquiry elements. Other integrated inquiry elements except drawing conclusion and transforming data were reflected less than ten percent. Investigation was also reflected less than ten percent of all inquiry activity. And inquiry activities were limited in terms of variety with few projects and no field trip. The main essence of the 7th science curriculum is the emphasis on total inquiry learning through various integrated inquiry elements and inquiry activities for higher grade students. Thus it is suggested that teachers provide inquiry learning which can supplement the textbook.

An Analysis of Inquiry Area in the Chemistry (I) Textbooks by the Inquiry Elements Based on the 7th Science Curriculum (제7차 과학교육과정의 탐구 요소들에 의한 화학 (I) 교과서의 탐구 영역 분석)

  • Kang, Dae-Ho;Jeong, Soo-Goon;Kim, Bong-Gon
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.633-644
    • /
    • 2003
  • The purpose of this study was to analyze the inquiry elements and inquiry activity of the inquiry area in chemistry I textbooks authorized by 7th curriculum. It was to confirm suitable reflection of the 7th science curriculum and to find educational suggestions of inquiry learning. It was found that the basic inquiry elements except measuring and classifying were well reflected on the textbooks. However, only several integrated inquiry elements and the inquiry activities were well reflected on the same textbooks. For the integrated inquiry elements, interpreting data was shown as the tower above the rest inquiry elements. In the analysis of inquiry activity, the numbers of experiment is placed almost half of all inquiry activities. The sum of two numbers of investigation and discussion is similar ratio to experiment but field trip and project are rarely or low ratio. As the integrated inquiry elements and inquiry activities were not balanced for various inquiry learning. It is suggested that learners be educated with complementary of these aspects in inquiry learning.

A Study on the System of Aircraft Investigation (항공기(航空機) 사고조사제도(事故調査制度)에 관한 연구(硏究))

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.9
    • /
    • pp.85-143
    • /
    • 1997
  • The main purpose of the investigation of an accident caused by aircraft is to be prevented the sudden and casual accidents caused by wilful misconduct and fault from pilots, air traffic controllers, hijack, trouble of engine and machinery of aircraft, turbulence during the bad weather, collision between birds and aircraft, near miss flight by aircrafts etc. It is not the purpose of this activity to apportion blame or liability for offender of aircraft accidents. Accidents to aircraft, especially those involving the general public and their property, are a matter of great concern to the aviation community. The system of international regulation exists to improve safety and minimize, as far as possible, the risk of accidents but when they do occur there is a web of systems and procedures to investigate and respond to them. I would like to trace the general line of regulation from an international source in the Chicago Convention of 1944. Article 26 of the Convention lays down the basic principle for the investigation of the aircraft accident. Where there has been an accident to an aircraft of a contracting state which occurs in the territory of another contracting state and which involves death or serious injury or indicates serious technical defect in the aircraft or air navigation facilities, the state in which the accident occurs must institute an inquiry into the circumstances of the accident. That inquiry will be in accordance, in so far as its law permits, with the procedure which may be recommended from time to time by the International Civil Aviation Organization ICAO). There are very general provisions but they state two essential principles: first, in certain circumstances there must be an investigation, and second, who is to be responsible for undertaking that investigation. The latter is an important point to establish otherwise there could be at least two states claiming jurisdiction on the inquiry. The Chicago Convention also provides that the state where the aircraft is registered is to be given the opportunity to appoint observers to be present at the inquiry and the state holding the inquiry must communicate the report and findings in the matter to that other state. It is worth noting that the Chicago Convention (Article 25) also makes provision for assisting aircraft in distress. Each contracting state undertakes to provide such measures of assistance to aircraft in distress in its territory as it may find practicable and to permit (subject to control by its own authorities) the owner of the aircraft or authorities of the state in which the aircraft is registered, to provide such measures of assistance as may be necessitated by circumstances. Significantly, the undertaking can only be given by contracting state but the duty to provide assistance is not limited to aircraft registered in another contracting state, but presumably any aircraft in distress in the territory of the contracting state. Finally, the Convention envisages further regulations (normally to be produced under the auspices of ICAO). In this case the Convention provides that each contracting state, when undertaking a search for missing aircraft, will collaborate in co-ordinated measures which may be recommended from time to time pursuant to the Convention. Since 1944 further international regulations relating to safety and investigation of accidents have been made, both pursuant to Chicago Convention and, in particular, through the vehicle of the ICAO which has, for example, set up an accident and reporting system. By requiring the reporting of certain accidents and incidents it is building up an information service for the benefit of member states. However, Chicago Convention provides that each contracting state undertakes collaborate in securing the highest practicable degree of uniformity in regulations, standards, procedures and organization in relation to aircraft, personnel, airways and auxiliary services in all matters in which such uniformity will facilitate and improve air navigation. To this end, ICAO is to adopt and amend from time to time, as may be necessary, international standards and recommended practices and procedures dealing with, among other things, aircraft in distress and investigation of accidents. Standards and Recommended Practices for Aircraft Accident Injuries were first adopted by the ICAO Council on 11 April 1951 pursuant to Article 37 of the Chicago Convention on International Civil Aviation and were designated as Annex 13 to the Convention. The Standards Recommended Practices were based on Recommendations of the Accident Investigation Division at its first Session in February 1946 which were further developed at the Second Session of the Division in February 1947. The 2nd Edition (1966), 3rd Edition, (1973), 4th Edition (1976), 5th Edition (1979), 6th Edition (1981), 7th Edition (1988), 8th Edition (1992) of the Annex 13 (Aircraft Accident and Incident Investigation) of the Chicago Convention was amended eight times by the ICAO Council since 1966. Annex 13 sets out in detail the international standards and recommended practices to be adopted by contracting states in dealing with a serious accident to an aircraft of a contracting state occurring in the territory of another contracting state, known as the state of occurrence. It provides, principally, that the state in which the aircraft is registered is to be given the opportunity to appoint an accredited representative to be present at the inquiry conducted by the state in which the serious aircraft accident occurs. Article 26 of the Chicago Convention does not indicate what the accredited representative is to do but Annex 13 amplifies his rights and duties. In particular, the accredited representative participates in the inquiry by visiting the scene of the accident, examining the wreckage, questioning witnesses, having full access to all relevant evidence, receiving copies of all pertinent documents and making submissions in respect of the various elements of the inquiry. The main shortcomings of the present system for aircraft accident investigation are that some contracting sates are not applying Annex 13 within its express terms, although they are contracting states. Further, and much more important in practice, there are many countries which apply the letter of Annex 13 in such a way as to sterilise its spirit. This appears to be due to a number of causes often found in combination. Firstly, the requirements of the local law and of the local procedures are interpreted and applied so as preclude a more efficient investigation under Annex 13 in favour of a legalistic and sterile interpretation of its terms. Sometimes this results from a distrust of the motives of persons and bodies wishing to participate or from commercial or related to matters of liability and bodies. These may be political, commercial or related to matters of liability and insurance. Secondly, there is said to be a conscious desire to conduct the investigation in some contracting states in such a way as to absolve from any possibility of blame the authorities or nationals, whether manufacturers, operators or air traffic controllers, of the country in which the inquiry is held. The EEC has also had an input into accidents and investigations. In particular, a directive was issued in December 1980 encouraging the uniformity of standards within the EEC by means of joint co-operation of accident investigation. The sharing of and assisting with technical facilities and information was considered an important means of achieving these goals. It has since been proposed that a European accident investigation committee should be set up by the EEC (Council Directive 80/1266 of 1 December 1980). After I would like to introduce the summary of the legislation examples and system for aircraft accidents investigation of the United States, the United Kingdom, Canada, Germany, The Netherlands, Sweden, Swiss, New Zealand and Japan, and I am going to mention the present system, regulations and aviation act for the aircraft accident investigation in Korea. Furthermore I would like to point out the shortcomings of the present system and regulations and aviation act for the aircraft accident investigation and then I will suggest my personal opinion on the new and dramatic innovation on the system for aircraft accident investigation in Korea. I propose that it is necessary and desirable for us to make a new legislation or to revise the existing aviation act in order to establish the standing and independent Committee of Aircraft Accident Investigation under the Korean Government.

  • PDF

An Investigation on Pre-service Chemistry Teachers’ Difficulties in Practice of Inquiry-based Experiment (문제 해결 중심 탐구실험에서 예비 화학교사들이 경험한 어려움에 대한 연구)

  • Baek, Jongho;Choi, Chui Im;Jeong, Dae Hong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.434-444
    • /
    • 2015
  • Inquiry-based experiments provide opportunities to understand scientific knowledge and acquire nature of science. In this study, the difficulties which pre-service teachers experienced in inquiry-based experiment class were investigated and analyzed. Twenty-two pre-service teachers attended course designed as ‘ill-structured inquiry’ for 13 weeks, and researchers investigated their difficulties by questionnaires and interview. They showed difficulties mostly in designing experiment and interpretation and also in understanding inquiry purpose, lack of prior knowledge, confidence in inquiry performance, and understanding of experimental instruments and facilities. As a result, it is necessary to provide opportunities to engage in inquiries and environments to properly instruct pre-service teachers the inquiry ability in college of education.

Analysis of Awareness of Teachers for Core Competencies and Scientific Core Competencies (핵심역량과 과학과 교과역량에 대한 초등 교사의 인식 분석)

  • Ha, Ji-hoon;Shin, Youngjoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.4
    • /
    • pp.426-441
    • /
    • 2016
  • The purpose of this study was getting the information for successful application to the national curriculum and students' core competencies enhancement, through investigation about competencies discussed in 2015 revised national curriculum development process and analysis about perception of 150 elementary school teachers in study. The results were as follows : Communication skill is considered to be the most important. Thinking ability what has been important traditionally is the middle of the rankings. Elementary school teachers think that a competency is specific to a subject. From this point of view, Creative/Scientific Problem-Solving Ability is the most important in science. They think that the enhancing of the ability of inquiry performance is highlighted in current science class. On elementary school teachers' awareness, inquiry model is the most effective in enhancing of scientific thinking and the ability of inquiry performance. And STS instruction model is in the other. PBL learning model and experimental inquiry model is the most effective in enhancing a competency has the highest feasibility like scientific thinking or the ability of inquiry performance.

A Comparative Analysis of Science Philosophical Views and Instruction Strategies for Open-inquiry between Teachers of Science-gifted and Teachers of General Students (과학영재 지도교사와 일반교사의 과학철학적 관점과 자유탐구 지도방식 비교)

  • Choi, Hyum-Dong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • The purpose of this study was to compare the science philosophical views and instruction strategies for open-inquiry between teachers of science-gifted and teachers of general students. The subjects were 45 teachers of science-gifted and 45 teachers of general students. The major results of this study were as follows: First, there was no differences on the science philosophical views between teachers of science-gifted and teachers of general students by chi-square tests (p<.05). Second, there were no differences on how task assignments, how to guide exploration data, and how to write reports between teachers of science-gifted and teachers of general students (p<.05). But there was meaningful differences on how to proceed with exploration activities between teachers of science-gifted and teachers of general students (p<.05). It is implied that this the results of this investigation will help the focus of future efforts to promote more adequate the science philosophical views and instruction strategies for open-inquiry in teachers of science-gifted.

The Investigation of Social Role based on HIRA Inquiry documents in 2005. (2005년 심사평가원 질의를 근거한 향후 학회의 역할 고찰)

  • Kim, Nam-Kuon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.3 s.31
    • /
    • pp.189-192
    • /
    • 2006
  • I reviewed some offical documents from Health Insurance Review Agency(HIRA) asked expert opinions of our society about some controversy between doctors and HIRA The results are as followed : 1. We must compensate the details of textbook about general treatment of frequent1y occurred disease. 2. We mush verify the obstinate disease and write papers consequently. 3. We must educate and use the special techniques of our societic area. 4. We must write papers about the recently developed intervention equipments.

  • PDF

Investigation of elementary teachers' perspectives on science inquiry teaching (과학 탐구 지도에 대한 초등학교 교사들의 인식 조사)

  • Jeon, Kyungmoon
    • Journal of Science Education
    • /
    • v.39 no.2
    • /
    • pp.267-277
    • /
    • 2015
  • This study explored elementary school teachers' perspectives on science inquiry teaching. First, an open-ended questionnaire was administered to elicit teachers' experiences of their approach to inquiry teaching. These self-reported approaches revealed three conceptions of teaching for inquiry learning in science: 'science process skills-centered' category focused on observing, classifying, measuring, and fair testing; 'generating scientific questions' category focused on students' question-generating; and 'illustrate concept and/or content' category focused on science content demonstration by making use of experimental procedures to obtain expected results. Second, teachers were asked to place 18 activity cards either close to or further from an 'inquiry-based science classroom' card. The relative distances from the activity card to the central classroom card were measured. The teachers perceived that students' activity of 'designing and implementing appropriate procedures' was the most important in supporting an inquiry-based science classroom. Understanding teachers' views has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development.

  • PDF

Secondary School Science Teachers' Perception of Inquiry Learning (탐구 학습에 관한 중등 과학 교사들의 인식)

  • Park, Jeung-Hee;Park, Ye-Ri;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.731-738
    • /
    • 2004
  • Secondary school science teachers' preception on inquiry learning was investigated by using questionnaires. According to these results, science teachers, who are participants of the current Korea National Science Curriculum, responded that raising the 'interest in science' was the most important objective of science education, and using practical scientific subject matters in class will do such. More than 72% of science teachers have used reconstructed materials. When reconstructed textbook contents were used, teachers through that the most important object is the 'acquirement of scientific knowledge'. Most science teachers perceived inquiry leaning as a student centered open investigation. Among factors that disturb inquiry leaning, critical ones were 'entrance examination', 'lake of teaching-leaning materials', 'little understanding of inquiry leaning', and 'lake of student's will to inquiry'.

Understanding of Scientific Inquiry Developed by Beginning Science Teachers in Professional Learning Community (교사학습공동체 활동을 한 초임중등과학교사의 과학 탐구에 대한 이해)

  • Kim, Yurim;Choi, Aeran
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.221-232
    • /
    • 2019
  • Despite the continuing emphasis on the importance of scientific inquiry, research studies have commented that authentic scientific inquiry is not implemented in school science classroom due to a lack of understanding of scientific inquiry by the teacher. The purpose of this study is to investigate understanding of scientific inquiry developed by beginning teachers through open-ended questionnaire and semi-structured interview. They voluntarily set up the goal of inquiry-based classes, planned inquiry-based classes, shared and reflected their teaching experience in professional learning community for more than a year. It appeared that participant teachers understood scientific inquiry as 'what scientists do', 'process how students do science' and 'science teaching methods.' All teacher participants described scientific inquiry as 'what scientists do', and understood 'the process of doing scientific investigation to solve problems related to natural phenomenon' and 'the process of constructing scientific knowledge using scientific practice.' Two participant teachers seemed to understand scientific inquiry as a 'teaching method' based on the understanding of the process how scientists or students do science. Participant teachers had a limited understanding of scientific inquiry that it is the same as laboratory works or hands-on activities prior to engaging the professional learning community, but they developed an understanding of scientific inquiry that there are various ways to conduct scientific inquiry after engaging in professional learning community.