• 제목/요약/키워드: input trajectory planning

검색결과 23건 처리시간 0.024초

입력 토오크 constraint를 가진 로보트 매니플레이터에 대한 최소 시간 궤적 계획 (A Minimum time trajectory planning for robotic manipulators with input torque constraint)

  • 홍인근;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.445-449
    • /
    • 1989
  • Achievement of a straight line motion in the Cartesian space has a matter of great importance. Minimization of task execution time with linear interpolation in the joint space, accomplishing of a approximation of straight line motion in the Cartesian coordinate is considered as the prespecified task. Such determination yields minimum time joint-trajectory subject to input torque constraints. The applications of these results for joint-trajectory planning of a two-link manipulator with revolute joints are demonstrated by computer simulations.

  • PDF

차륜 이동 로봇의 모터 구동 전압 제한 조건을 고려한 코너링(cornering) 모션의 최소 시간 궤적 계획 및 제어 (Near-Minimum-Time Cornering Trajectory Planning and Control for Differential Wheeled Mobile Robots with Motor Actuation Voltage Constraint)

  • 변용진;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.845-853
    • /
    • 2012
  • We propose time-optimal cornering motion trajectory planning and control algorithms for differential wheeled mobile robot with motor actuating voltage constraint, under piecewise constant control input condition. For time-optimal cornering trajectory generation, 1) we considered mobile robot's dynamics including actuator motors, 2) divided the cornering trajectory into one liner section, followed by two cornering section with angular acceleration and deceleration, and finally one liner section, and 3) formulated an efficient trajectory generation algorithm satisfying the bang-bang control principle. Also we proposed an efficient trajectory control algorithm and implemented with an X-bot to prove the performance.

Improved Deep Learning-based Approach for Spatial-Temporal Trajectory Planning via Predictive Modeling of Future Location

  • Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1726-1748
    • /
    • 2024
  • Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.

2-관성 공진계의 진동 억제를 위한 기준 입력 궤적에 관한 연구 (Study on Reference Trajectory Planning for Vibration Suppression of 2-Mass System)

  • 권혁성;이학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.123-126
    • /
    • 2003
  • This paper presents an speed reference trajectory planning methods for vibration suppression in a t-mass resonant system which has a flexible coupling between a load and a driving motor. Due to this flexibility, the system often suffers vibration especially when the motor is controlled for higher speed command. The steady state conditions are utilized to derive desired load speed trajectory which does not cause the torsional vibration. And the desired motor speed trajectory is synthesized base on the relation between load and motor speed. The simulation and experiment result suggest that the proposed method effectively suppress the vibration.

  • PDF

다수 위협에 대한 무인항공기 최적 경로 계획 (Optimal Path Planning for UAVs under Multiple Ground Threats)

  • 김부성;방효충;유창경;정을호
    • 한국항공우주학회지
    • /
    • 제34권1호
    • /
    • pp.74-80
    • /
    • 2006
  • 본 논문은 레이더와 같은 지상의 다수위협이 존재하는 상황에서 무인항공기의 비행경로 최적화에 관한 것이다. 레이더에 의한 피탐성, 즉 비행체에 의해 반사되는 레이더 신호강도를 최소화하면서 목적지까지의 비행시간을 최소화하는 관점에서 성능지수를 제안하였다. 1차의 시간지연 시스템으로 가정된 비행체의 경사각을 제어입력으로 고려하였으며, Sequential Quadratic Programming기법에 기반한 입력 파라미터 최적화 기법을 사용하여 궤적최적화를 수행하였다. 제안된 무인 항공기 경로계획 기법은 Voronoi 선도기법과 비교하였을 때, 생존성을 증대시키면서도 항공기의 역학적 특성을 고려한 비행경로를 제공한다.

자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획 (Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments)

  • 서장필;이경수
    • 자동차안전학회지
    • /
    • 제11권3호
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.

모터 제어 입력 제한 조건이 고려된 차륜 이동 로봇을 위한 효율적인 최소 시간 코너링(Cornering) 주행 계획 (Efficient Minimum-Time Cornering Motion Planning for Differential-Driven Wheeled Mobile Robots with Motor Control Input Constraint)

  • 김재성;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.56-64
    • /
    • 2013
  • We propose an efficient minimum-time cornering motion planning algorithms for differential-driven wheeled mobile robots with motor control input constraint, under piecewise constant control input sections. First, we established mobile robot's kinematics and dynamics including motors, divided the cornering trajectory for collision-free into one translational section, followed by one rotational section with angular acceleration, and finally the other rotational section with angular deceleration. We constructed an efficient motion planning algorithm satisfying the bang-bang principle. Various simulations and experiments reveal the performance of the proposed algorithm.

Near-optimum trajectory planning for robot manipulators

  • Yamamoto, Motoji;Marushima, Shinya;Mohri, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.621-626
    • /
    • 1989
  • An efficient algorithm for planning near-optimum trajectory of manipulators is proposed. The algorithm is divided into two stages. The first one is the optimization of time trajectory with given spatial path. And the second one is the optimization of the spatial path itself. To consider the second problem, the manipulator dynamics is represented using the path parameter "s", then a differential equation corresponding to the dynamics is solved as two point boundary value problem. In this procedure, the gradient method is used to calculate improved input torques.t torques.

  • PDF

산업용 로보트의 카르테시안 직선 운동을 위한 조인트-궤적의 최소 시간화 (On Minimum Time Joint-Trajectory Planning for the Cartesian Straight Line Motion of Industrial Robot)

  • 전홍태;오세현
    • 대한전자공학회논문지
    • /
    • 제24권5호
    • /
    • pp.753-761
    • /
    • 1987
  • Approximation of a Cartesian straight line motion with linear interpolation in the joint space has many desirable advantages and applications. But inappropriate determination of the corresponding subtravelling and transition times makes such joint-trajectories violate the input torque/force constraints. An approach that can overcome this difficult and yield the joint trajectories utilizing the allowable maximum input torque/force is established in this paper. The effectiveness of these results is demonstrated by using a three-joint revolute manipulator.

  • PDF

The Implementation of RRTs for a Remote-Controlled Mobile Robot

  • Roh, Chi-Won;Lee, Woo-Sub;Kang, Sung-Chul;Lee, Kwang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2237-2242
    • /
    • 2005
  • The original RRT is iteratively expanded by applying control inputs that drive the system slightly toward randomly-selected states, as opposed to requiring point-to-point convergence, as in the probabilistic roadmap approach. It is generally known that the performance of RRTs can be improved depending on the selection of the metrics in choosing the nearest vertex and bias techniques in choosing random states. We designed a path planning algorithm based on the RRT method for a remote-controlled mobile robot. First, we considered a bias technique that is goal-biased Gaussian random distribution along the command directions. Secondly, we selected the metric based on a weighted Euclidean distance of random states and a weighted distance from the goal region. It can save the effort to explore the unnecessary regions and help the mobile robot to find a feasible trajectory as fast as possible. Finally, the constraints of the actuator should be considered to apply the algorithm to physical mobile robots, so we select control inputs distributed with commanded inputs and constrained by the maximum rate of input change instead of random inputs. Simulation results demonstrate that the proposed algorithm is significantly more efficient for planning than a basic RRT planner. It reduces the computational time needed to find a feasible trajectory and can be practically implemented in a remote-controlled mobile robot.

  • PDF