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Abstract - An efficient algorithm for planning near-optimum trajectory of manipulators is pro-
posed. The algorithm is divided into two stages. The first one is the optimization of time trajectory
with given spatial path. And the second one is the optimization of the spatial path itself. To con-

sider the second problem, the manipulator dynamics is represented using the path parameter ©

"
R

then a differential equation corresponding to the dynamics is solved as two point houndary value
problem. In this procedure, the gradient method is used to calculate improved input torques.

1. Introduction

Optimum trajectory planning for robot ma-
nipulators is one of ithe most essential problem
to realize the off-line teaching systems for in-
dnstrial robots. Although many algorithins of
optimum trajectory planning for manipulators
are proposed, the efficient ones for general cost
have not necessarily been obtained yet. This pa-
per treats this general trajectory planning prob-
lem which includes the optimization of a spatial
path.

The trajectory planning problems, in which a
limitation for a range of the joint angle is not
considered and a work space is free from ob-
stacles, are broadly divided into two categories.
One is the case that a spatial path of a manipu-
lator is pre-planned and another is the case that
the spatial path is not given, so the optimization
of the spatial path is required. We will treat the
latter case.

As for the former case that the spatial path is
given, Shin et al.{l}, Vukobratovi¢ et al.[2] and
Ozaki et al.[3] have proposed the methods which
use Dynamic Programming. These methods can
generate the optimum trajectory under the gen-
eral cost function which includes the time opti-
mal problem.

On the other hand, the latter general trajec-
tory planning problem which includes the opti-
mization of the spatial path is studied by some
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researchers. Geering et al.[4] and Yamamoto et
al.[5] have proposed methods based on the max-
imum principle. Rajan [6] has proposed an ap-
proximate method in which the joint trajectory
is approximated by spline function. However
these methods are restricted to time optimal
problem in which the cost function is the travel-
ing time. The studies for general cost functions
are little. The algorithm presented here is an
approximate method for this problem. In this
algorithm, the manipulator dynamics is repre-
sented by a path parameter “s” and a differen-
tial equation corresponding to the dynamics is
solved as two point boundary value problem. To
calculate the improved input torque, the gradi-
ent method is used in the algorithm.

2. Optimum Trajectory Planning Problem

In this section, we will formulate the general
trajectory planning problem. The dynamics of
the manipulator system is expressed by

H(0)0 + h(0,0) +g(0)+ Do =u (1)

Where 6 € R* is a joint variable vector, H(0) €
R™*% {5 an inertia moment matrix, h(0,0) e N
is a Coriolis and centrifugal forces vector, D €
R™*" represents viscous friction coefficients, ¢g(#)
€ N™ is a gravitation vector and u € R* is an
actuator driving torque/force vector. Usually
the output of actual actuator is limited, so in



this formulation, we may restrict the actuator
driving torque/force as follows.

Ui min S “i(t) S Ui max (2)

(it=1,---,n)
Where w; i, and u; .. are i-th lower and upper
bounds of actuator driving torque/force. At the
general trajectory planning problem in which
obstacles in a work space are not considered,
only 1nitial and terminal conditions are given as
follows.

0(0) = 90 0(89) = 06
00)=0 0(t.)=0 (3)

Performance index for this problem is

JZﬁﬁWmmmmm (4)

Here ¢, is terminal time and it is not given.

Then our problem becomes to how to obtain
the joint trajectory which minimizes the cost
eq.(4) under the constraint eq.(2) and boundary
conditions, eq.(3).

3. Path Parameter “s” and Spatial Path

In this section, we will make clear the dif-
ference of the spatial path and time trajectory.
Then we will represent the manipulator dynam-
ics by a path parameter.

Here we introduce a scalar parameter “s” which
is a general length along the path for the tip of
manipulator’s end-effecter (See Fig.1 ). We call
this parameter “s” as path parameter. 0(s) is
called as spatial path when the path is repre-
sented by the path parameter “s”. And 0(t) is
called as time trajectory when it is represented
by time “t”. A(s) is defined to connect the path
parameter “s” with time “t” directly, then dt is

described as 1

= ds
A(s)
Obviously the condition A(s) > 0 is necessary.
Time ¢ can be described with A(s) as

s 1

There exist the following relations between the
spatial path 0(s) and time trajectory 0(1).

0(t) = 0(s) (7)

(5)
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Fig.1 Path parameter and spatial path

(1) = M) ) (3)
) = V(5 T 4y DAL
Substituting eqs.(7)~(9) into eq.(1) yield
(s) = MHO) T | gas), Ly
@I 10 D 4 p Py gy

(10)
Actuator driving torque/force is formally de-
scribed as u(s) instead of u(t) because “s” is
directly related with “t” by eq.(6). Substitut-
ing eqs.{7)~(10) into eq.(4) yield

RN O S PCRTEI

ds (11)
From this equation, we find that if a spatial
path is given, the value of cost function could
be calculated by determining A(s). Therefore
the trajectory planning problem of this type is
to generate the optimal trajectory of A(s). The
algorithms to generate the optimal A(s) have
been proposed by some researchers. Those algo-
rithms are called “MCTP (Minimum Cost Tra-
Jectory Planning) algorithm”. Most of the re-
searchers use one of the optimization techniques,
Dynamic Programming in their methods. How-
ever, their methods are not necessarily effective
because they are very time consuming. Another
approximate method is also proposed by QOzaki
et al. in which the trajectory of A(s) is described
by B-spline function. In our method, we use the
approximate method in view of accuracy of so-
lution #nd calculation time. This algorithm is
described in the following section.

4. MCTP Algorithm

In this section, the MCTP algorithm is pre-



sented briefly. First, we represent the trajectory
A(s) by B-spline function. Dividing 0 < s < s,
into m sections (so(= 0), -+, 8n(= S¢)) , A(s) in
S <8< 841 18 expresse(l by B-spline function
(order four) as follows.

s(l) = s, + 1As 0<i<l1 (12)
Als) = A(l) = Z /\1+J]\“1.+] A(0) (13)
]———1
dA(s) 1 dANj4;4(D)
e Ry st heiall)
ds Asy, ];1 ks dl (14)
Where Asj, = s34, — 8. Base functions of B—
spline are
Ny 14(1) = (=343 =-31+1)/6
Nia(l) =(3 P—612+4)/6
Ny, 4(/) = (=3B + 32+ 314+ 1)/6
Ny 13/6
k+24 ) /) (15)
(1’::07""”7)

Control points ;\k(k =-1,0,l.m—-1,m,m+1)
of A(s) are chosen so as to satisfy the boundary
conditions, eq.(3). This means A(0) = A(s.) = 0
from eq.(8). It is obvious that A(s) and %%—S—) de-
pend on only the control points Mk =2+,
2). Conseqnently if in the case that the spatial
path 0(s) and d—z%fl are given, the cost function
can be calculated only by defining the control
points Ar. With above discussions, the approxi-
mate algorithm, in the case that the spatial path
is given, is described as follows.

1. Give the spatial joint path 6(s).

n—

2. Give appropriately large values for ;\k(lc =
2,--+,m — 2) and generate the initial path
of A(s).

3. Search the control points /\A(k =2,
2) so as to make the cost J minimum under
the constraints.

m —

4. Repeat searching M. When the decrease of
cost J equals D or nearly equals 0, the algo-
rithm is stopped.

5. Optimization of Spatial Path

In this section, the efficient method which im-
proves the spatial path using the dynamics of
manipulator represented by the path parameter

@

8" is described.

Firstly, because the inertia matrix H(0) is
nonsingular, we may rewrite the eq.(10) as

a*0(s) _ u(s)—g(s) 1
g = HOE)” R X(s) A(s)
IA(s 16(s di(s db(s
2 g D p Py o), D00
(16)

Here we define the state variable vector z € R?"
as follows.

(7)
(L = 17 ’ )
Then, eq.(16) is expressed as
d 8
) et ae, B gy s

This non-linear differential equation corresponds
to the manipulator dynamics represented by the
path parameter “s”.

Now we consider how to solve the differen-
tial equation with given A(s), —-ﬁ—- and u(s). As
for the boundary conditions, t\\o terminal joint
positions #(0) = 0y and 8(s,) = 0, are specified
and two terminal values of '3%—’1 are not specified.
That means there is two-point boundary value
problem with given z;(0), z;{s.) (¢ = 1,---,n)
and with free z;(0), x;(s.) (f = n+1,---,2n). In
the eq.(18), A(s), ——’3@ and u(s) can not be cal-
culated until 8(s) is doﬁned 50 we can not solve
the eq.(18) with this form. Therefore, based on
the eq.(18), the updating formula to get the spa-
tial path z(s) is

1/ .

B7S) _ paiis), ngs), B sy
ds (19)
Where j represents the iteration and A (s) is the
optimum trajectory of A(s) for the joint path
(27(s) (= {[07()]T, 224 T}T) at the former it-
eration. A/ (s) is obtained for the spatial path
z(s) by using the MCTP algorithm. u*/(s)
must be improved input torque, so we calcu-
late this u*/(s) using the gradient method. To
obtain the gradient function we may represent
eq.(19) with the expression of time “t” as

da (1) e
pr ()

The cost function, eq.(4) is modified to obtain

YUE

as

~—

= f(at(1), (20)
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the gradient function as follows.

J=F(t) + [ * ol (), u(o))de

First term of the right hand side is added to sat-
isfy the boundary condition of terminal point x,.

Now let 177 (1) denote the gradient function for
the j-th iteration.

(21)

By using the gradient func-
tion 7’(¢), the improved input torque u* () is
given as

1/,”([) = u ( ) —an’ ( )

Where « is an appropriate positive constant.
The gradient function 7’(t) is calculated as

(22)

: IF (i 0
vt = Cgetdhree, 0@,

dfo 1 te dfo.r ; f
rEm 7 Nl 5 1 ) g ]
+(8U )-73];“ +/; (OT )L ,uq) (T [)((?U)I ,u-(T

0<t<t, (23)

Where @ is the state transition matrix for the
following linear time varying system.

d(éx) _of a7
de ((‘)rj” 0T +(

{éfc:m—:vf

)J, Wi 0
_ 24
bu=1u —w @)

(1, t) can be obtained by solving the following
matrix differential equation.

O (te,t) = E
d. . . .
Gl )] = =@ (1,0 40(1)
0<t<t, (25)
Where v o/
L) = (50 (26)

and £ represents a unit matrix. In our problem,
terminal time ¢, is not specified. So the gradient
function, eq.{23) is not appropriate if it is used
Just this form. Therefore we modify the gradient
function as follows.

) N OF(x(t, £ Atj)
P Osa = (TR

LOf 7 Afo 1
() x? u1+(au )r7u7

texat dfg. 1 i of . r
+ G B w P (OGS

VT0i(t, + At 1)

0<t <t +At (27)

From this equation, we obtain two improved in-
puts u*(t)’s corresponding to 17(f);a, and

7’ (t)-ar. Then we get two spatial paths AR
the case for +At) and 227 (s)( the case for —Af)
by solving the differential equation (20) using
two u*(t)’s. We chose the spatial path which
gives smaller value of cost J as the improved
spatial path at the next iteration.

6. Algorithm for Trajectory Planning

We will show an algorithm for general trajec-
tory planning problem based on the method pro-
posed in the previous section. To execnute this
algorithm using the updating equation (19), ini-
tial spatial path (2°(s) (= {[0°(s)]T, [“G&1]T}T)
is needed. In this algorithm, we use a straight
line in the joint space as an initial spatial path

for simplicity. This path is expressed as

0. -0
0°(s) = =< - s+ 0, (28)
do°(s) _ 0. — 0, (29)
ds Se

Based on the result of previous section, the
whole algorithm for general trajectory planning
problem is given as follows.

1. Obtain the initial spatial path 8°(s) from
eqs. (28) and (29). Let J be sufliciently
large positive value. Set j = —1.

2.8et 7 =4+ 1.

3. Obtain the optimum A(s), d’\( ! by applying

the MCTP algorithm to the jOl]lT path 0/ (s).
Calculate 0,0, 6, u from eqs. (T}~(10). Cal-
culate costJ? from eq.(4). If two Ji’s (the
case of +At and ~At) exist for #/(s), smaller
one is used in the following procedures. Set
AJ = J7 — Ji71 If AJ is sufficiently small,
the algorithm ends.

4. Sect 0, 6 — x, then calculate the state transi-

tion matrix @7 (¢, + At, t) from eq.(25). Cal-
culate the gradient functlons () sa using

eq.(27).

5. Set « in eq.(22) appropriately small posi-
tive value. Calculate two u*(1)s in the case
of £At from eq.(22). If u*(t) excesses the
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Fig.2 Structure of manipulator

limitation of the input considering the con-
straint eq.(2), u*(t) is modified with the fol-
lowing manner.

if u:’(t) > U mer then uf’j(t) = U maz
if w’(t) < U min then w7 (t) = Ui pmin

(i=1,---,n) (30)

6. Obtain an improved spatial path z/+!(s) solv-
ing the eq.(20) as two point boundary value
problem.

7. Set 27*1(s) — 071(s). Go to 3.
7. Example

In this section, the proposed algorithm for
trajectory planning problem is applied to a two
link manipulator which is illustrated in Fig.2.
This manipulator moves in the vertical plane.
The dynamics of this manipulator is

(21 + 2mI*(3 + 2 cos 0,)}6, + {I + mi2(1
+2 cos 03) 0y — 2mi? sin 0,(26, 6, + 62)
—mgl{3sinf; + sin(d, + 6,)} = u;
{I +ml*(1 4 2cos )}, + (I + mi*)f,
+2mi? sin 029% —mglsin{f; + 05) = uy (31)
Where I denotes the inertia moment (I = 4.167x
10~%kg - m?) about the axis through the cen-
ter of gravity for each link, m denotes the mass
{m = 1.0kg) for each link and ! denotes a half
of each link ({ = 0.1m). Let each element of the

term D which represents viscous friction be 0
for simplicity. The cost (eq.(4)) is given as
fo=14B(ul +u3) (32)

In this example the value of 3 is 0.03. The
cost function to evaluate the gradient (eq.(21))
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Table 1 Constraints and boundary conditions

Joint 1 Joint 2
Ut omax (em| 1020 5.0
Ui min Gem)  -10.0 -5.0
0.(0) toea 5.9 -50.¢
8, (te)(ang) -90.90 0.0
is given as

J= "/é(.ri(te) — zei) ]Dte fo(t)dt (33)

Where the value of v is 0.1 and . denotes
the given terminal condition. The limitations
of driving torques and boundary conditions of
joint trajectory are given in Table 1. [ig.3 shows
the initial spatial path in work space. This is a
straight line path in joint space. The dot-dash-
lines represent the center lines of manipulator
links. The cost for this path is J = 0.95859 ap-
plying the MCTP algorithm. Fig.4 and Fig.5
show the spatial path at 1-st iteration of algo-
rithm and the spatial path obtained by proposed
method (at 6-th iteration) respectively. Cor-
responding values of cost are J' =0.72659 and
J8=0.57766. Fig.6 ~ Fig.8 are optimum inputs
for the spatial paths 6° 6',0° (Fig.3 ~ Fig.5)
obtained by MCTP respectively. Table 2 shows
the outline of the convergence for this example.
In the table, index values and the values of o in
eq.(22) are given at each iterations.

. Conclusion

An approximate method has been proposed
for the gencral trajectory planning problem of
manipulator including the optimization of spa-
tial path. In this method, the manipulator dy-
namics is represented by the path parameter “s”
which does not depend on time. The algorithm
is constructed based on the manipulator dynam-
ics represented by “s”, so the given boundary
conditions at initial and terminal points can be
easily satisfied. This is an advantage of this
method. Furthermore, because the method takes
the form of feasible method, the calculation with
this algorithm may be stopped at any time if the
desired accuracy of a solution is obtained. As
an example, the proposed method is applied to



Goal

Fig.3 Initial spatial path 0°(s)

Fig.4 Spatial path

Fig.5 Improved spatial path 8°(s)

at 1-st iteration 0'(s)

Fig.6 Optimum input torque for #°(s)

a two link manipulator. Then the effectiveness
of this method is shown by the result of this ex-
ample.
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