• Title/Summary/Keyword: input resistance

Search Result 597, Processing Time 0.022 seconds

A Circuit Extractor Using the Quad Tree Structure (Quad Tree 구조를 이용한 회로 추출기)

  • 이건배;정정화
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.101-107
    • /
    • 1988
  • This paper proposes a circuit extractor which extracts a netlist from the CIF input file cntaining the layout mask artwork informations. The circuit extractor extracts transistors and their interconnections, and calculates circuit parameter such as parasitic resistance and parasitic capacitance from the mask informations. When calculating the parasitic resistance, we consider the current flow path to reduce the errors caused by the resistance approximation. Similarly, we consider the coupling capacitance which has an effect on the circuit characteristics, when the parasitic capacitances are calculated. Therefore, using these parameter values as an input to circuit simulation, the circuit characteristics such as delay time can be estimated accurately. The presented circuit extraction algorithm uses a multiple storage quad tree as a data sturucture for storing and searching the 2-dimensional geometric data of mask artwork. Also, the proposed algorithm is technologically independent to work across a wide range of MOS technologies without any change in the algorihm.

  • PDF

The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe (ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향)

  • Lee, B.W.;Lee, J.S.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.

Characteristics of Step-Down Transformer in PZT Piezoelectric Ceramics (PZT계 압전 세라믹 변압기의 감압특성)

  • 김오수;이준형;손정호;남효덕;조상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.885-891
    • /
    • 2001
  • Ring/dot-type step-down piezoelectric transformer was manufactured by using Pb[(Mn$\sub$1/3/Sb$\sub$2/3)$\sub$0.05/Zr$\sub$0.475/Ti$\sub$0.475/]O$_3$ ceramics, which have excellent high-power piezoelectric properties. The characteristics of step-down piezoelectric transformer as a function of load resistance at output terminal was examined. Voltage gain was greatly dependent on drive frequency and load resistance, and showed maximum voltage gain at the resonance frequency. The output voltage was linearly increased as the input voltage increased. Voltage gain of the step-down piezoelectric transformer with respect to input voltage was very stable when the load resistance was in the range of 50-500 $\Omega$ .

  • PDF

Embedded Object-Oriented Micromagnetic Frame (OOMMF) for More Flexible Micromagnetic Simulations

  • Kim, Hyungsuk;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.491-495
    • /
    • 2016
  • We developed an embedded Object-Oriented Micromagnetic Frame (OOMMF) script schemes for more flexible simulations for complex and dynamic mircomagnetic behaviors. The OOMMF can be called from any kind of softwares by system calls, and we can interact with OOMMF by updating the input files for next step from the output files of the previous step of OOMMF. In our scheme, we set initial inputs for OOMMF simulation first, and run OOMMF for ${\Delta}t$ by system calls from any kind of control programs. After executing the OOMMF during ${\Delta}t$, we can obtain magnetization configuration file, and we adjust input parameters, and call OOMMF again for another ${\Delta}t$ running. We showed one example by using scripting embedded OOMMF scheme, tunneling magneto-resistance dependent switching time. We showed the simulation of tunneling magneto-resistance dependent switching process with non-uniform current density using the proposed framework as an example.

Microstructural Characteristics of Zircaloy-4 Nuclear Fuel Cladding Welds by Resistance Upset Welding Processes (저항 업셋 용접방식에 따른 Zircaloy-4 핵연료 피복재 용접부의 미세조직 특성)

  • 고진현;김상호;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.98-104
    • /
    • 2002
  • A study on microstructures of welds for Zircaloy-4 sheath end closure by the resistance upset welding methods was carried out. Two upset welding process variations such as magnetic farce and multi-impulse resistance welding were used. Grain size and microhardness across welds were analysed in terms of welding parameters. Magnetic farce resistance weld with one cycle of unbalanced mode has smaller upset length and $\alpha-grain$ size in heat affected zone than those of multi-impulse resistance weld because of lower heat input and shorter welding time. Heat affected zone formed by two upset resistance welding variations revealed fine Widmanstatten structure or martensitic ${\alpha}'$ structure due to the high heating rate and foster cooling rate. Magnetic force resistance welds showed recrystallized grains before grain growth, whereas multi-impulse resistance welds showed full grain growth.

Analysis for Aerodynamic Resistance of Chrysanthemum Canopy through Wind Tunnel Test (풍동실험을 통한 국화군락의 공기유동 저항 분석)

  • Yu, In-Ho;Yun, Nam-Kyu;Cho, Myeong-Whan;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • A wind tunnel test was conducted at Protected Horticulture Experiment Station of National Horticultural Research Institute in Busan to find the aerodynamic resistance and quadratic resistance coefficient of chrysanthemum in greenhouse. The internal plants of the CFD model has been designed as a porous media because of the complexity of its physical shapes. Then the aerodynamic resistance value should be input for analyzing CFD model that crop is considered while the value varies by crops. In this study, the aerodynamic resistance value of chrysanthemum canopy was preliminarily found through wind tunnel test. The static pressure at windward increased as wind velocity and planting density increased. The static pressure at leeward decreased as wind velocity increased but was not significantly affected by planting density. The difference of static pressure between windward and leeward increased as wind velocity and planting density increased. The aerodynamic resistance value of chrysanthemum canopy was found to be 0.22 which will be used later as the input data of Fluent CFD model. When the planting distances were $9{\times}9\;cm$, $11{\times}11\;cm$, and $13{\times}13\;cm$, the quadratic resistance coefficients of porous media were found to be 2.22, 1.81, and 1.07, respectively. These values will be used later as the input data of CFX CFD model.

A study on the weld nugget formation in resistance spot welding of aluminum alloy (알루미늄 합금의 저항 점 용접시 용접너깃의 형성에 대한 연구)

  • 나석주;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.661-669
    • /
    • 1986
  • In this study, the resistance spot welding process of an aluminum alloy was analyzed through the numerical simulation including the electric contact resistance and the heat generation in the electrode. The finite element model was used to solve the electro-thermal responses in weld cycles. The resistance of the contact area was represented as the contact element modeling, but the thermal resistance between the contact surfaces was neglected. Welding tests of Alclad 2024-T3 aluminum alloy were made not only to get the input data for the numerical simulation, but also to compare the numerical results. The contact resistance was determined initially by the contact resistance tests and assumed to decay exponentially up to the solidus temperature. The temperature distributions and dynamic resistance obtained numerically were in good agreement with the experimental results. Numerical results revealed that nugget growth depends mainly on the heat generated in the workpiece and its contact area. The heat generated in the electrode has, however, only a little effect on the nugget growth, and the heat generation in the electrode-workpiece interface is initially high but decrease repidly.

A Study on Application of Warm Air Circulator by Using the Carbon Heating Element with Particle Type (입상 탄소 발열체의 열원을 이용한 온풍기의 적용에 관한 연구)

  • Bae, K.Y.;Lee, K.S.;Kong, T.W.;Chung, H.S.;Jeong, H.Y.;Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • This paper is a study on application of warm air circulator by using the carbon heating element with particle type. The main variables are the input current and amount of carbon heating source for experimental characteristics. The experimental results are obtained as follows. As the input current and temperature are increased, the resistance of heat source is decreased about $20{\sim}25%$ by the effect of negative resistance. As the amount of heating source is small, Joule heat is large with the input current. When the amount of heating source is 300 and the input current is 15A, the value of Joule heat is about 4604.6kJ/h. The heat production efficiency of carbon heating source is larger about 10% than the sheath heater.

  • PDF

The resistance characterization of OTP device using anti-fuse MOS capacitor after programming (안티퓨즈 MOS capacitor를 이용한 OTP 소자의 프로그래밍 후의 저항특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2697-2701
    • /
    • 2012
  • The yield of OTP devices using anti-fuse MOS capacitor have been affected by the input resistance, the size of the pass transistor and the read transistor, and the readout voltage of programed cell. To investigate the element which gives an effect to yield, we analyze the full map data of the resistance characterization of OTP device and those data in a various experimental condition. As a result, we got the optimum conditions which is necessary to the yield improvement. The optimum conditions are as follows: Input resistance is 50 ohms, the channel length of pass transistor is 10um, read voltage is 2.8 volt, respectively.