DOI QR코드

DOI QR Code

Embedded Object-Oriented Micromagnetic Frame (OOMMF) for More Flexible Micromagnetic Simulations

  • Kim, Hyungsuk (Department of Electrical Engineering, Kwangwoon University) ;
  • You, Chun-Yeol (Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2016.11.15
  • Accepted : 2016.12.06
  • Published : 2016.12.31

Abstract

We developed an embedded Object-Oriented Micromagnetic Frame (OOMMF) script schemes for more flexible simulations for complex and dynamic mircomagnetic behaviors. The OOMMF can be called from any kind of softwares by system calls, and we can interact with OOMMF by updating the input files for next step from the output files of the previous step of OOMMF. In our scheme, we set initial inputs for OOMMF simulation first, and run OOMMF for ${\Delta}t$ by system calls from any kind of control programs. After executing the OOMMF during ${\Delta}t$, we can obtain magnetization configuration file, and we adjust input parameters, and call OOMMF again for another ${\Delta}t$ running. We showed one example by using scripting embedded OOMMF scheme, tunneling magneto-resistance dependent switching time. We showed the simulation of tunneling magneto-resistance dependent switching process with non-uniform current density using the proposed framework as an example.

Keywords

References

  1. W. F. Brown, "Micromagnetics". New York: Wiley (1963).
  2. A. Aharoni, "Introduction to the theory of Ferromagnetism", 2nd Ed. Oxford University Press (2000).
  3. M. J. Donahue and D. G. Porter, OOMMF User's Guide, Version 1.0, Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (Sept 1999).
  4. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. V. Waeyenberge, AIP Advances 4, 107133 (2014). https://doi.org/10.1063/1.4899186
  5. M. Scheinfein, LLG Micromagnetic Simulator, http://llgmicro.home.mindspring.com/
  6. W. Scholz, Magpar, http://www.magpar.net/
  7. Vampire, http://vampire.york.ac.uk/features/
  8. Suessco Simulations, http://suessco.com/simulations/
  9. Extension modules for OOMMF, http://math.nist.gov/oommf/contrib/oxsext
  10. Chun-Yeol You, Appl. Phys. Lett. 100, 252413 (2012). https://doi.org/10.1063/1.4730376
  11. Chun-Yeol You, J. Magn. 17, 73 (2012). https://doi.org/10.4283/JMAG.2012.17.2.073
  12. Chun-Yeol You, Appl. Phys. Expr. 5, 103001 (2012). https://doi.org/10.1143/APEX.5.103001
  13. Chun-Yeol You and Myung-Hwa Jung, J. Appl. Phys. 113, 073904 (2013). https://doi.org/10.1063/1.4792728
  14. D. Aurélio, L. Torres, and G. Finocchio, J. Magn. Magn. Mater. 321, 3913 (2009). https://doi.org/10.1016/j.jmmm.2009.07.050
  15. J. C. Slonczewski, J. Magn. Magn. Mater. L1, 159 (1996).
  16. H. Jaffres, D. Lacour, F. Nguyen Van Dau, J. Briatico, F. Petroff, and a. Vaures, Phys. Rev. B 64, 064427 (2001). https://doi.org/10.1103/PhysRevB.64.064427
  17. The modified version of "CYY_STTEvolve" will be available upon request to author.

Cited by

  1. Effect of Finite Tunneling Magnetoresistance for the Switching Dynamics in the Spin Transfer Torque Magnetic Tunneling Junctions vol.53, pp.11, 2017, https://doi.org/10.1109/TMAG.2017.2712779