Analysis for Aerodynamic Resistance of Chrysanthemum Canopy through Wind Tunnel Test

풍동실험을 통한 국화군락의 공기유동 저항 분석

  • Yu, In-Ho (Protected Horticulture Experiment Station, NHRI, RDA) ;
  • Yun, Nam-Kyu (Division of Agricultural Facilities and Resource Engineering, NIAE, RDA) ;
  • Cho, Myeong-Whan (Protected Horticulture Experiment Station, NHRI, RDA) ;
  • Lee, In-Bok (Rural Systems Engineering, Seoul National University)
  • 유인호 (원예연구소 시설원예시험장) ;
  • 윤남규 (농업공학연구소 시설자원공학과) ;
  • 조명환 (원예연구소 시설원예시험장) ;
  • 이인복 (서울대학교 농업생명과학대학 지역시스템공학)
  • Published : 2008.06.30

Abstract

A wind tunnel test was conducted at Protected Horticulture Experiment Station of National Horticultural Research Institute in Busan to find the aerodynamic resistance and quadratic resistance coefficient of chrysanthemum in greenhouse. The internal plants of the CFD model has been designed as a porous media because of the complexity of its physical shapes. Then the aerodynamic resistance value should be input for analyzing CFD model that crop is considered while the value varies by crops. In this study, the aerodynamic resistance value of chrysanthemum canopy was preliminarily found through wind tunnel test. The static pressure at windward increased as wind velocity and planting density increased. The static pressure at leeward decreased as wind velocity increased but was not significantly affected by planting density. The difference of static pressure between windward and leeward increased as wind velocity and planting density increased. The aerodynamic resistance value of chrysanthemum canopy was found to be 0.22 which will be used later as the input data of Fluent CFD model. When the planting distances were $9{\times}9\;cm$, $11{\times}11\;cm$, and $13{\times}13\;cm$, the quadratic resistance coefficients of porous media were found to be 2.22, 1.81, and 1.07, respectively. These values will be used later as the input data of CFX CFD model.

작물은 복잡한 형상 때문에 CFD모델에서 다공성 매체로 설계된다. 작물이 고려된 CFD 모델 해석을 위해서는 작물군락의 공기저항값을 입력하여야 하며, 이 값은 작물에 따라 달라진다. 본 연구에서는 풍동실험을 통해 국화군락의 공기저항 값을 구하였다. 풍상측에서는 풍속과 재식밀도가 증가할수록 정압이 증가하였다. 풍하측에서는 풍속이 증가할수록 정압이 낮아졌으나 재식밀도의 영향은 크게 받지 않는 것으로 나타났다. 풍속과 재식밀도가 증가할수록 풍상측과 풍하측의 압력차가 커지는 것으로 나타났다. 국화군락의 공기저항값인 항력계수 $C_d$값은 0.22였으며, Fluent 프로그램의 공기저항 계수로 이용한다. CFX 프로그램에서 필요로 하는 다공성 매체의 특성값 $K_Q$는 재식간격 $9{\times}9cm$일 때 2.22, $11{\times}11cm$일 때 1.81, $13{\times}13cm$일 때 1.07이었으며, 이 값을 CFX 프로그램의 quadratic resistance coefficient로 입력한다.

Keywords

References

  1. ANSYS CFX. 2007. The manual of ANSYS CFX, Version 11.0. ANSYS Inc., PA, USA
  2. Boulard, T. and S. Wang. 2002. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel. Computers and Electronics in Agriculture 34:173-190 https://doi.org/10.1016/S0168-1699(01)00186-7
  3. Fluent. 2006. The manual of computational fluid dynamics(CFD), Version 6.3. Fluent Inc., Lebanon, N.H
  4. Hong, S.W. 2008. Analytical comparison on ventilation efficiencies of naturally ventilated multi-span greenhouses and development crop modeling using CFD technology. Thesis. Seoul National Univ. p. 19- 27 (in Korean)
  5. Lee, I.B. and T.H. Short. 1999. Analysis of the efficiency of natural ventilation in a multi-span greenhouse using CFD simulation. J. Bio-Env. Con. 8(1):9-18 (in Korean)
  6. Lee, I.B. and T.H. Short. 2000. Two-dimensional numerical simulation of natural ventilation in a multispan greenhouse. Transactions of ASAE. 43(3):745- 753 https://doi.org/10.13031/2013.2758
  7. Lee, I.B. and T.H. Short. 2001. Verification of computational fluid dynamics temperature simulations in a full scale naturally ventilated greenhouse. Transactions of ASAE. 44(1):119-127 https://doi.org/10.13031/2013.2303
  8. Lee, I.B., N.K. Yun, T. Boulard, JC Roy, S.H Lee, K.W. Kim, S.K. Lee, and S.H. Kwon. 2006. Development of an aerodynamic simulation for studying microclimate of plant canopy in greenhouse. J. Bio-Env. Con. 15(4):289-295 (in Korean)
  9. Wilson, J.D. 1985. Numerical studies of flow through a windbreak. Journal of Wind Engineering 21:119-154