• Title/Summary/Keyword: input parameter

Search Result 1,644, Processing Time 0.032 seconds

Model Analysis of Plate using by Digital Test System (디지털 실험장치를 이용한 판의 모우드 해석)

  • Hong, Bong-Ki;Bae, Dong-Myung;Bae, Seong-Yoeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network (원전 금속파편시스템에 신경회로망 적용연구)

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.227-230
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect, locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal, Rising time, Half period, and Global time, they are used as the inputs to neural network. Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising Time, Half Period, Maximum amplitude. The result showed that the neural network would be applied to LPMS. Also, applying the neural network to the Practical false alarm data during startup and impact test signal at nuclear power Plant, the false alarms are reduced effectively. 1.

  • PDF

Back-analysis Technique in Tunnelling Using Extended Bayesian Method md Relative Convergence Measurement (확장 Baysian 방법과 상대변위를 이용한 터널 역해석 기법)

  • Choi Min-Kwang;Cho Kook-Hwan;Lee Geun-Ha;Choi Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.99-108
    • /
    • 2005
  • One of the most important and difficult tasks in designing underground structure is the estimation of engineering properties of the ground. The main purpose of this study is to propose a new back-analysis technique in tunnelling to estimate geotechnical parameters around a tunnel. In this study, the Extended Bayesian Method, which appropriately combines objective information with subjective one, is adopted to optimize engineering parameters. By using only relative convergence data measured during tunnelling as input values in back-analysis, inevitable errors in absolute convergence estimation are excluded and 3-dimensional numerical analysis is applied to consider a trend of relative convergence occurrence. Finally, 3-dimensional back-analysis technique using relative convergence is proposed and evaluated using a hypothetical site.

A Case Study of Back-analysis Technique in Tunnelling Using Extended Bayesian Method and Relative Convergence Measurement (확장 Baysian 방법과 상대변위를 이용한 터널 역해석 기법의 적용사례연구)

  • Lee In-Mo;Choi Min-Kwang;Cho Kook-Hwan;Lee Geun-Ha;Choi Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.109-118
    • /
    • 2005
  • It is a very difficult task to estimate engineering properties of the ground when designing underground structures, especially in tunnelling. Therefore, a feed-back system to combine the data measured in construction field with priorly estimated information at the design stage is necessary. In this paper, 3-dimensional back-analysis in tunnelling, to which only relative convergence is applied as input values, is carried out to estimate the optimum geotechnical parameters. For this purpose, the Extended Bayesian Method (EBM), which appropriately combines the objective information with the subjective one, is applied to optimize engineering parameters and 3-dimensional numerical analysis is carried out to predict a trend of relative convergence occurrence. The data measured from two tunnelling sites are used to verify the applicability of the proposed back-analysis technique. from the results of analysis, the proposed back-analysis technique is verified.

An Analysis of the Sensitivity of Input Parameters for the Seismic Hazard Analysis in the Korean Peninsula (한반도 지진위험도 산출을 위한 입력 파라메타의 민감도 분석)

  • Kim, Min-Ju;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • This study is to analyze the sensitivity for the parameters (a and b values, $M_{max}$, attenuation formula, and seismo-tectonic model) which are essential for the seismic hazard map. The values of each parameter were suggested by 10 members of the expert group. The results show that PGA increases as a value and $M_{max}$ become larger and as b value smaller. Big impact on the seismic hazard is observed for attenuation formula, a and b values although there is little impact on $M_{max}$ and seismo-tectonic model. These parameters with big impact require careful consideration for obtaining adequate values that well reflects the seismic characteristics of the Korean peninsula.

Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season (우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구)

  • Song, Pyung-Hyun;Baek, Yong;You, Byung-Ok;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.45-54
    • /
    • 2014
  • Many studies have been made on investigation, design, explanation and treatments etc. to minimize slope failure. However, the problem is that failures of cutting slope and natural slope due to Typhoon and localized heavy rainfall are still not reduced. It is difficult to treat the problem by only strengthening the design standard. And it is very necessary to carry out design and safety analysis under the most suitable conditions considering foundation and rainfall characteristics. In this study, variations of safety factor were discussed from different aspects to investigate the influence of different parameters of rainfall and analysis conditions. Rainfall and foundation conditions are supposed to be the most sensitive parameters to slope stability, and numerical analysis were performed by changing parameters of the two conditions. Rainfall behavior is based on the domestic statistical rainfall and foundation condition is selected as unsaturated soils. Study results show that, application of rainfall characteristics in different area and parameters of unsaturated soils are responding sensitively to variations of slope safety. Therefore, the input parameters should be fully examined when performing the practical design.

Gain Parameter Determination for the Feeding Speed and Skew Controller of Media Transport System using Optimization Technique (최적화 기법을 적용한 매체 이송 시스템의 이송속도 및 비틀어짐 제어기의 이득값 결정)

  • Cha, Ho-Young;Bum, Sun-Ho;Kim, Min-Soo;Lee, Soon-Geul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.607-613
    • /
    • 2009
  • In this paper, we made a simple paper feeding system which is one of MTS (media transport system) and controllers. The plant has a flexible paper and two driving rollers and two driven rollers. The control system has two conventional PID controllers. Skew angle and feeding speed of MTS deteriorate the quality of feeding system. In order to control a feeding speed and skew of feeding paper, we control rotational velocity of two driving rollers. Therefore, this controller has two inputs and two outputs as MIMO (multi-input and multi-output) system. The control inputs were the feeding speed and the skew displacement of the paper. The control outputs were the rotational velocity to each driving roller. To find appropriate PID gains of two controllers, we proposed an optimization technique. We assume the system variables and performance of a whole system as follows. PID gains of two controllers for skew and feeding speed are system variables. System performance is both skew and feeding speed. We simulates to making mathematical correlation using global Kriging interpolation. To find appropriate value of system variables, optimization method is simulation in sequence as following method. First, the optimization solver simulates with DOE (design of experiment) tables to find correlation equation of both system variable and performances. Then, the solver guesses the appropriate values and simulates if the system variables are appropriate or not. If the result of validation doesn't satisfy the convergence and iteration tolerance, the solver makes a new Kriging models and iterates this sequence until satisfy the tolerances.

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.

A Study Evaluating Welding Quality in Pressure Vessel Using Mahalanobis Distance (마할라노비스 거리를 이용한 압력용기 용접부 용접성 평가에 관한 연구)

  • Kim, Ill Soo;Lee, Jong Pyo;Lee, Ji Hye;Jung, Sung Myoung;Kim, Young Su;Chand, Reenal Ritesh;Park, Min Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • Robotic GMA (Gas Metal Arc) welding process is one of widely acceptable metal joining process. The heat and mass inputs are coupled and transferred by the weld arc to the molten weld pool and by the molten metal that is being transferred to the weld pool. The amount and distribution of the input energy are basically controlled by the obvious and careful choices of welding process parameters in order to accomplish the optimal bead geometry and the desired quality of the weldment. To make effective use of automated and robotic GMA welding, it is imperative to predict online faults for bead geometry and welding quality with respect to welding parameters, applicable to all welding positions and covering a wide range of material thickness. MD (Mahalanobis Distance) technique was employed for investigating and modeling the GMA welding process and significance test techniques were applied for the interpretation of the experimental data. To successfully accomplish this objective, two sets of experiment were performed with different welding parameters; the welded samples from SM 490A steel flats. First, a set of weldments without any faults were generated in a number of repeated sessions in order to be used as references. The experimental results of current and voltage waveforms were used to predict the magnitude of bead geometry and welding quality, and to establish the relationships between weld process parameters and online welding faults. Statistical models developed from experimental results which can be used to quantify the welding quality with respect to process parameters in order to achieve the desired bead geometry based on weld quality criteria.

Assessment of Soil Loss in Irrigation Reservoir based on GIS (GIS를 이용한 관개용 저수지의 토사유실량 산정에 관한 연구)

  • Park, Woo Sik;Hong, Soon Heon;Ahn, Chang Hwan;Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.439-446
    • /
    • 2013
  • This paper is about assessment of soil loss in irrigation reservoir based on GIS. Natural disaster caused by soil loss whose natural incidence has been rapidly reduced due to successful tree planting campaign shows high potential risk, since the latest localized heavy rain resulted from extreme weather event and artificial land development acts as direct factors for land disaster. To prevent it, various techniques and technologies have been used to predict effect of soil loss. However, reliability of techniques and technologies to predict its effect precisely is relatively low so far because the natural disaster by soil loss is taken place by complicated interaction between possible factors and direct factors. Geospatial approach is essential to examine these interactions. In this regard, this study will provide detailed plan to improve prediction reliability for soil loss of irrigation reservoir, using GIS that has Hydrologic -Topographical parameter and digital map as its input parameters.