• Title/Summary/Keyword: input frequency

Search Result 3,699, Processing Time 0.039 seconds

Uncertain-parameter sensitivity of earthquake input energy to base-isolated structure

  • Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.347-362
    • /
    • 2005
  • The input energy to a base-isolated (BI) building during an earthquake is considered and formulated in the frequency domain. The frequency-domain approach for input energy computation has some notable advantages over the conventional time-domain approach. Sensitivities of the input energy to the BI building are derived with respect to uncertain parameters in the base-isolation system. It is demonstrated that the input energy can be of a compact form via the frequency integration of the product between the input component (Fourier amplitude spectrum of acceleration) and the structural model component (so-called energy transfer function). With the help of this compact form, it is shown that the formulation of earthquake input energy in the frequency domain is essential for deriving the sensitivities of the input energy to the BI building with respect to uncertain parameters. The sensitivity expressions provide us with information on the most unfavorable combination of the uncertain parameters which leads to the maximum energy input.

Computer Input Frequency of Blood Glucose Self Testing in Type 2 Diabetic Patients (유.무선 인터넷을 이용한 제2형 당뇨형환자 가정에서의 혈당 입력)

  • Kim, Hee-Seung
    • Research in Community and Public Health Nursing
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • Purpose: The purpose of this study was to investigate the computer input frequency of blood glucose self testing in type2 diabetic patients, for three months. Method: 39 participants were recruited from the endocrinology outpatient department of a tertiary care hospital in an urban city. The computer input frequencies were measured by patients' log in and input of http://www.biodang.com. Glycosylated haemoglobin was determined by a high performance liquid chromatography technique and fasting blood glucose was analyzed by the glucose oxidase method. Diabetes knowledge was measured by a 19 item diabetes knowledge test. Results: The computer input frequency of before breakfast blood glucose was 33.5 for three months. The total blood glucose input frequency tended to be lower in female, aged patients, middle school graduates, those who have no spouse and job, those who have no insulin treatment, obese subjects, and hyperglycemia patients, than in their counterparts. The diabetic knowledge was positively correlated with the computer input frequency of blood glucose self testing. Conclusion: An educational program should be developed to increase the computer input frequency of blood glucose self testing in type2 diabetic patients.

  • PDF

Design of Robust Convolution Input Shaper for the Variation of Frequency and Damping Ratio (주파수와 감쇠비 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers have been considered robustness fur only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness fur the variation of frequency and damping ratio.

High Frequency Dual Mode Control LLC Resonant Converter with Wide Input Voltage Range (넓은 입력전압범위의 고주파수 구동 Dual mode control LLC 공진형 컨버터)

  • Joo, Hyung-Ik;Yang, Jung-Woo;Jo, Kang-Ta;Han, Sang-Kyoo;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2016
  • In this paper, a high-frequency dual mode control LLC resonant converter with wide input voltage range is proposed through zero voltage switching (ZVS) under the universal line input voltage and every load conditions. Conventional small power adapter driving should be satisfied with universal line input voltage because it has no power factor correction circuit regulation. The conventional LLC resonant converter for an adapter can reduce the size of transformer in terms of high-frequency driving and ZVS. However, this converter has a disadvantage in terms of design of resonant tank under various input voltages because the frequency modulation range is very wide to satisfy voltage conversion gain. Compared with the conventional one, the proposed LLC converter can be adapted to universal line input voltage and high-frequency driving because it is controlled by pulse width modulation and pulse frequency modulation with control voltage. The validity of the proposed LLC converter is proved through the 60 W prototype.

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

Theoretical Analysis of Frequency Dependent Input Resistance in RF MOSFETs (RF MOSFET의 주파수 종속 입력 저항에 대한 이론적 분석)

  • Ahn, Jahyun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.11-16
    • /
    • 2017
  • The frequency dependent input resistance observed in RF MOSFETs is analyzed in detail by deriving pole and zero frequency equations from a simplified input equivalent circuit. Using this theoretical analysis, we find that the reduction effect of the input resistance in the low frequency region arises from the channel resistance between source and pinch-off region in the saturation region. This channel resistance effect on the low frequency reduction of the input resistance is physically validated by performing small-signal equivalent circuit modeling with varying the channel resistance.

Design of Robust Convolution Input Shaper for Variation of Parameter (파라메터 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.127-133
    • /
    • 2001
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers has been considered robustness for only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness for the variation of frequency and damping ratio.

  • PDF

Effect of an initial displacement on a nano-guiding system (나노 가이드 시스템에서 초기 변위의 영향에 관한 연구)

  • Lee, Dong-Yeon;Lee, Moo-Yeon;Gweon, Dae-Gab;Park, June-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1396-1403
    • /
    • 2006
  • This study shows that the system performance of a positioning system composed of a piezoelectric actuator-driven flexure guide depends largely on the preload applied on the flexure guide and the driving input amplitude. We used a flexure guided system that had an original resonant frequency of 54Hz. Our experiment showed that we could increase the driving bandwidth above the original resonant frequency, for a case involving a large preload and a small input amplitude. Results show that there is a specific 'separation frequency' where the response of the moving mass of the flexure system decouples from the response oi the piezoelectric actuator, and this specific separation frequency can be selected by a proper choice of the preload and the input amplitude. To find the separation frequency, sine sweep tests were performed. To confirm the increased system bandwidth frequency, open-loop sine tracking experiments were performed. Test results show that the system responds very well up to 130 Hz frequency higher than the original natural frequency (54Hz).

  • PDF

Effect of an Initial Displacement on a Nano-guiding System (나노 가이드 시스템에서 초기 변위의 영향에 관한 연구)

  • Lee, Moo-Yeon;Gweon, Dae-Gab;Lee, Dong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.346-354
    • /
    • 2006
  • This study shows that the system performance of a positioning system composed of a piezoelectric actuator-driven flexure guide depends largely on the preload applied on the flexure guide and the driving input amplitude. We used a flexure guided system that had an original resonant frequency of 54 Hz. Our experiment showed that we could increase the driving bandwidth above the original resonant frequency, for a case involving a large preload and a small input amplitude. Results show that there is a specific 'separation frequency' where the response of the moving mass of the flexure system decouples from the response of the piezoelectric actuator, and this specific separation frequency can be selected by a proper choice of the preload and the input amplitude. To find the separation frequency, sine sweep tests were performed. To confirm the increased system bandwidth frequency, open-loop sine tracking experiments were performed. Test results show that the system responds very well up to 130 Hz frequency higher than the original natural frequency (54 Hz).

The effect on the seasonal performance of an inverter compressor with higher and lower operating range (인버터 압축기의 저속과 고속운전범위가 계절성능에 미치는 영향)

  • 박윤철;하도용;민만기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study was conducted on the effect of compressor capacity control range of heat pump on the seasonal energy efficiency ratio with variation of the maximum and minimum compressor input frequencies. To obtain seasonal energy efficiency ratio, steady state test at the maximum, minimum and intermediate compressor speed and cyclic test at the minimum compressor speed should be conducted. Maximum input frequency was varied to 95Hz, 105Hz, and 115Hz, and the minimum input frequency was varied to 35Hz, 45Hz, and 55Hz. The seasonal energy efficiency ratio increased as the input frequency of the compressor decreased. The maximum input frequency had only slight effects on the SEER.

  • PDF