• Title/Summary/Keyword: input filter design

Search Result 382, Processing Time 0.028 seconds

Design of Ku-Band Low Noise Amplifiers including Band Pass Filter Characteristics for Communication Satellite Transponders (대역통과여파기 특성을 갖는 통신위성중계기용 Ku-Band 저잡음증폭기의 설계 및 제작)

  • 임종식;김남태;박광량;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.872-882
    • /
    • 1994
  • In this paper, the Low Noise Amplifier(LNA) is designed and fabricated to include a band pass filter characteristics considering the antenna system characteristics according to the transmitting and receiving signal level of communication satellite transponder. As an example, a 2-stage low noise amplifier and a 4-stage amplifier and designed, fabricated and measured at 14,0~14.5GHz of receiving frequency band. This fabricated LNA has shown the gain with very good flatness within pass-band, and its gain decreases rapidly out of band resulting in supperssion of the transmitting signal power leakage. It has shown the 20.3dB +- 0.1dB of pass-band gain, the 1.44dB +-0.04dB of noise figure and the 14dB rejection out of band(12.25~12.75GHz). The gain flatness, noise figure and group delay of this 2-stage LNA satisfactorily met the simulation results. And the fabricated 4-stage amplifier has shown the more than 42dB of pass-band gain, the +-0.25dB of flatness and the 28dB of the rejection effect for transmitting power leakage. The 2-stage LNA and 4-stage amplifier, in this paper, will bring a design margin for the input filter and also result in the system cost reduction.

  • PDF

A study on the Improved Convergence Characteristic over Weight Updating of Recycling Buffer RLS Algorithm (재순환 버퍼 RLS 알고리즘에서 가중치 갱신을 이용한 개선된 수렴 특성에 관한 연구)

  • 나상동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.830-841
    • /
    • 2000
  • We extend the sue of the method of least square to develop a recursive algorithm for the design of adaptive transversal filters such that, given the least-square estimate of this vector of the filter at iteration n-1, we may compute the updated estimate of this vector at iteration a upon the arrival of new data. We begin the development of the RLS algorithm by reviewing some basic relations that pertain to the method of least squares. Then, by exploiting a relation in matrix algebra known as the matrix inversion lemma, we develop the RLS algorithm. An important feature of the RLS algorithm is that it utilizes information contained in the input data, extending back to the instant of time when the algorithm is initiated. In this paper, we propose new tap weight updated RLS algorithm in adaptive transversal filter with data-recycling buffer structure. We prove that convergence speed of learning curve of RLS algorithm with data-recycling buffer is faster than it of exiting RL algorithm to mean square error versus iteration number. Also the resulting rate of convergence is typically an order of magnitude faster than the simple LMS algorithm. We show that the number of desired sample is portion to increase to converge the specified value from the three dimension simulation result of mean square error according to the degree of channel amplitude distortion and data-recycle buffer number. This improvement of convergence character in performance, is achieved at the (B+1)times of convergence speed of mean square error increase in data recycle buffer number with new proposed RLS algorithm.

  • PDF

Improve Stability of Military Infrared Image and Implement Zynq SoC (군사용 적외선 영상의 안정화 성능 개선 및 Zynq SoC 구현)

  • Choi, Hyun;Kim, Young-Min;Kang, Seok-Hoon;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Military camera equipment has a problem that observability is inferior due to various shaking factors. In this paper, we propose an image stabilization algorithm considering performance and execution time to solve this problem and implemented it in Zynq SoC. We stabilized both the simple shaking in the fixed observation position and the sudden shaking in the moving observation position. The feature of the input image is extracted by the Sobel edge algorithm, the subblock with the large edge data is selected, and the motion vector, which is the compensation reference, is calculated through template matching using the 3-step search algorithm of the region of interest. In addition, the proposed algorithm can distinguish the shaking caused by the simple shaking and the movement by using the Kalman filter, and the stabilized image can be obtained by minimizing the loss of image information. To demonstrate the effectiveness of the proposed algorithm, experiments on various images were performed. In comparison, PSNR is improved in the range of 2.6725~3.1629 (dB) and image loss is reduced from 41% to 15%. On the other hand, we implemented the hardware-software integrated design using HLS of Xilinx SDSoC tool and confirmed that it operates at 32 fps on the Zynq board, and realized SoC that operates with real-time processing.

Residual Vibration Control of High Speed Take-out Robot Used for Handling of Injection Mold Plastic Part (고속운동 플라스틱 금형사출 부품 취출 로봇의 잔류진동 제어)

  • Rhim, Sung-Soo;Park, Joo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1025-1031
    • /
    • 2011
  • Take-out robots used for handling of the plastic parts manufactured with the injection mold are usually the gantry type that consists of long and thin links, The performance of the take-out robot is determined by the speed of the motion and the positioning accuracy to grab the part out of the mold, As the speed of the robot increases the flexure in the links of the take-out robot becomes more significant and it results in more residual vibration, The residual vibration deteriorates the positioning accuracy and compels the operator to slow down the motion of the robot. The typical method to reduce the vibration in the robot requires stiffening the links and/or slowing down the robot, Vibration control could achieve the desired performance without increasing the manufacturing cost or the operation cost that would be incurred otherwise, Considering the point-to-point nature of the task to be performed by the take-out robot the time-delay command (or input) shaping filter approach would be the most effective control method to be adopted among a few available control schemes. In this paper a direct adaptive command shaping filter (ACSF) algorithm has been modified and applied to design the optimal command shaping filters for various configuration of the take-out robot. Optimal filters designed by ACSF algorithm have been implemented on a take-out robot and the effectiveness of the designed filters in terms of vibration suppression has been verified for multiple positions of the robot.

The Design of Low Noise Downconverter for K-band Satellite Multipoint Distribution Service (K-band SMDS용 저잡음 하향변환기의 설계)

  • 정인기;이영철;김천석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1143-1150
    • /
    • 2001
  • In this paper, we designed a downconverter for K-band satellite multipoint distribution service(SMDS). The designed downconverter consists of a low noise amplifiers, bandpass filter, stable local oscillator, drain mixer and If Amplifiers. Low noise amplifiers show 28㏈ gain and 1.5㏈ noise figure in the frequency range of 19.2㎓~20.2㎓, and a band pass filter has a -l㏈ insertion loss, and 18.25㎓ Stable local oscillator which is dielectric resonant oscillation, We obtained that the output power of the 18.25㎓ oscillation frequency is 0.5㏈m and the phase noise is the -84.67㏈c at 10KHz offset frequency. With the input RF signal the 19.2㎓~20.2㎓, conversion gain of the drain mixer shows 5㏈ at the Intermediate frequency range of 950MHz~1950MHz. We have proved that the designed downconverter satisfied the specification of a K-band satellite multipoint distribution service and it can be applied to the satellite internet receiver.

  • PDF

Parallel Gaussian Processes for Gait and Phase Analysis (보행 방향 및 상태 분석을 위한 병렬 가우스 과정)

  • Sin, Bong-Kee
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.748-754
    • /
    • 2015
  • This paper proposes a sequential state estimation model consisting of continuous and discrete variables, as a way of generalizing all discrete-state factorial HMM, and gives a design of gait motion model based on the idea. The discrete state variable implements a Markov chain that models the gait dynamics, and for each state of the Markov chain, we created a Gaussian process over the space of the continuous variable. The Markov chain controls the switching among Gaussian processes, each of which models the rotation or various views of a gait state. Then a particle filter-based algorithm is presented to give an approximate filtering solution. Given an input vector sequence presented over time, this finds a trajectory that follows a Gaussian process and occasionally switches to another dynamically. Experimental results show that the proposed model can provide a very intuitive interpretation of video-based gait into a sequence of poses and a sequence of posture states.

Design of an OTA Improving Linearity with a Mobility Compensation Technique (이동도 보상 회로를 이용한 OTA의 선형성 개선)

  • 김규호;양성현;김용환;조경록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.46-53
    • /
    • 2003
  • This paper describes a new linear operational transconductance amplifier (OTA) and its application to the 9th-order Bessel filter. To improve the linearity of the OTA, we employ a mobility compensation technique. The combination of the triode and the subthreshold region transistors can compensate the mobility reduction effect and make the OTA with a good linearity. The proposed OTA shows $\pm$0.32% Gm variation over the input range of $\pm$0.8-V. The total harmonic distortion (THD) was lower than -60-㏈. The 9th-order Bessel filter has been designed using a 0.35-${\mu}{\textrm}{m}$ n-well CMOS process under 3.3-V supply voltage. It shows the cutoff frequency of 8-MHz and the power consumption of 65-mW.

Face Detection Using Skin Color and Geometrical Constraints of Facial Features (살색과 얼굴 특징들의 기하학적 제한을 이용한 얼굴 위치 찾기)

  • Cho, Kyung-Min;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.107-119
    • /
    • 1999
  • There is no authentic solution in a face detection problem though it is an important part of pattern recognition and has many diverse application fields. The reason is that there are many unpredictable deformations due to facial expressions, view point, rotation, scale, gender, age, etc. To overcome these problems, we propose an algorithm based on feature-based method, which is well known to be robust to these deformations. We detect a face by calculating a similarity between the formation of real face feature and candidate feature formation which consists of eyebrow, eye, nose, and mouth. In this paper, we use a steerable filter instead of general derivative edge detector in order to get more accurate feature components. We applied deformable template to verify the detected face, which overcome the weak point of feature-based method. Considering the low detection rate because of face detection method using whole input images, we design an adaptive skin-color filter which can be applicable to a diverse skin color, minimizing target area and processing time.

  • PDF

GA-based parameter identification of DC motors (DC 모터의 GA 기반 파라미터 추정)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.716-722
    • /
    • 2014
  • In order to design the speed controller of the DC motor system, firstly, parameters estimation of the system must be preceded. In this paper, we proposed the application of genetic algorithm(GA) optimization in estimating the parameters of DC motor. Estimated models are considered both first and second order models, and each estimated model is optimized by minimizing three different types of the evaluation function of GA. Also, GA is imported in comparison with estimation result of numerical analysis method because of its power in searching entire solution space with more probability of finding the global optimum. Data for parameter estimation is acquired from input and output signals of the actual experiment device and the butterworth filter also designs for removing noise in the signals. Finally comparison between real data of the actual device and estimated models is presented to indicate effectiveness and resolution of proposed identification method.

Design and Fabrication of K-band multi-channel receiver for short-range RADAR (근거리 레이더용 K대역 다채널 전단 수신기 설계 및 제작)

  • Kim, Sang-Il;Lee, Seung-Jun;Lee, Jung-Soo;Lee, Bok-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.545-551
    • /
    • 2012
  • In this paper, K-band multi-channel receiver was designed and fabricated for low noise amplification and down conversion to L-band. The fabricated multi-channel receiver incorporates GaAs-HEMT LNA(Low noise amplifier) which provides less than a 2 dB noise figure, IR(Image Rejection) Filter for rejection of image frequency, IR(Image rejection) mixer to reject a image frequency and improve an IMD(Intermodulation Distortion) characteristic. Test results of the fabricated multi-channel receiver show less than a 3.8 dB noise figure, conversion gain of more than 27dB, and IP1dB(Input 1dB Gain Compression Point) of -9.5 dB and over.