DOI QR코드

DOI QR Code

GA-based parameter identification of DC motors

DC 모터의 GA 기반 파라미터 추정

  • Lee, Yun-Hyung (Education & Research Team, Korea Institute of Maritime and fisheries Technology) ;
  • So, Myung-Ok (Division of Marine Engineering, Korea Maritime and Ocean University)
  • Received : 2014.06.09
  • Accepted : 2014.07.30
  • Published : 2014.07.31

Abstract

In order to design the speed controller of the DC motor system, firstly, parameters estimation of the system must be preceded. In this paper, we proposed the application of genetic algorithm(GA) optimization in estimating the parameters of DC motor. Estimated models are considered both first and second order models, and each estimated model is optimized by minimizing three different types of the evaluation function of GA. Also, GA is imported in comparison with estimation result of numerical analysis method because of its power in searching entire solution space with more probability of finding the global optimum. Data for parameter estimation is acquired from input and output signals of the actual experiment device and the butterworth filter also designs for removing noise in the signals. Finally comparison between real data of the actual device and estimated models is presented to indicate effectiveness and resolution of proposed identification method.

DC 모터 시스템의 속도 제어기를 설계하기 위해서는 먼저 시스템의 파라미터 추정이 선행되어야 한다. 본 논문에서는 유전알고리즘을 이용하여 DC 모터 시스템의 파라미터를 추정하는 기법에 대해 다룬다. 이때 사용되는 추정 모델은 1차 및 2차 모델을 고려하며, 유전알고리즘의 3가지 평가함수를 고려하여 최적화한다. 또한, 유전알고리즘이 해공간에서 최적해를 탐색하는 능력의 우수함을 보여주기 위해 수치적 해석 방법을 통한 추정 결과도 함께 비교한다. 이때 파라미터 추정에 사용되는 데이터는 실제 실험장치의 입출력데이터를 이용하며, 신호의 잡음 제거를 위해 Butterworth 필터도 함께 설계한다. 마지막으로 제안한 기법을 통해 얻어진 모델과 실제 실험장치의 데이터와 비교하여 그 유효성과 정확성을 확인한다.

Keywords

References

  1. Y. Nozaka, "Trend of new control theory application in industrial process control (survey)", Proceedings of International Federation of Automatic Control 12th Triennial World Congress. vol. 4, pp. 215-218, 1993.
  2. K. J. Astrom and T. Hagglund, "Automatic tuning of simple regulators with specifications on phase and amplitude margins", Automatica, vol. 20, pp. 645-651, 1984. https://doi.org/10.1016/0005-1098(84)90014-1
  3. T. Yamamoto, M. Kaneda, T. Oki, E. Watanabe, and K. Tanaka, "Intelligent tuning PID controllers", Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 2610-2615, 1995.
  4. E. H. Bristol, "Pattern recognition: an alternative to parameter identification in adaptive control", Automatica, vol. 13, pp. 197-202, 1977. https://doi.org/10.1016/0005-1098(77)90046-2
  5. A. Dupuis, M. Ghribi, and A. Kaddouri, "Multiobjective genetic estimation of DC motor parameters and load torque," Proceedings of IEEE International Conference on Industrial Technology, vol. 3, pp. 1511-1514, 2004.
  6. M. Lankarany and A. Rezazade, "Parameter estimation optimization based on genetic algorithm applied to DC motor", Proceedings of International Conference on Electrical Engineering, pp. 1-6, 2007.
  7. M. S. A. Mohamad, I. M. Yassin, A. Zabidi, M. N. Taib, and R. Adnan, "Comparison between PSO and OLS for NARX parameter estimation of a DC motor," IEEE Symposium on Industrial Electronics & Applications, pp. 27-32, 2013.
  8. I. F. EI-Arabawy, H. A. Yousef, M. Z. Mostafa, and H. M. AbduIkader, "Parameters estimation of nonlinear models of DC motors using neural networks," Proceedings of 26th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, pp. 1997-2000, 2000.
  9. G. Jin and S. Joo, "A study on a real-coded genetic algorithm", Journal of Control Automation and Systems Engineering, vol. 6, no. 4, pp. 268-275, 2000.
  10. G. G. Jin, Genetic Algorithm and It's Application, Kyowoosa, 2000.