• Title/Summary/Keyword: inorganic salts

Search Result 206, Processing Time 0.027 seconds

Thermal and Electrochemical Stability of Morpholinium Ionic Liquids (모폴린계 이온성 액체의 열 및 전기화학적 안정성)

  • Kim, Hyun-Taek;Hong, Yeon Ki;Kang, Jeong Won;Lee, Young-Woo;Kim, Ki-Sub
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.702-707
    • /
    • 2012
  • During the last few decades, toxic chemicals used in various industries have caused global pollution and the side products such as carbon dioxide and methane gas have contributed to global warming. Thus, it is desirable to develop new alternative solvents. It is well known that ionic liquids display a variety of environmentally friendly physical properties: nonvolatile, nonflammable, wide electrochemical windows, high inherent conductivities, wide thermal operating ranges, chemically inert, and limited miscibilities with organic solvents. Because of these characteristics, ionic liquids are promising candidates as solvents for synthetic chemistries, catalysis, and gas separations. In this study, we synthesized morpholiunium salts as N-ethyl-N-methylmorpholine Bromide, N-butyl-N-methylmorpholine Bromide, N-octyl-N-methylmorpholine Bromide, N-ethyl-N-methylmorpholine Tetrafluoroborate, N-butyl-N-methylmorpholine Tetrafluoroborate, N-octyl-N-methylmorpholine Tetrafluoroborate, N-ethyl-N-methylmorpholine Hexafluorophosphate, N-butyl-N-methylmorpholine Hexafluorophosphate, and N-octyl-N-methylmorpholine Hexafluorophosphate. The melting points, decomposition temperatures and electrochemical stabilities of the salts were measured by DSC, TGA, and CV, respectively. The salts with halide anion showed high melting points ($150{\sim}200^{\circ}C$), low decomposition temperatures ($200{\sim}230^{\circ}C$), narrow electrochemical stabilities (3.4~3.6 V). The synthesized salts with inorganic anions, on the other hand, presented low melting point ($50{\sim}110^{\circ}C$), high decomposition temperatures ($250{\sim}380^{\circ}C$), wide electrochemical stabilities (6.1~6.3 V). We also found that the properties depend on the length of the carbon chain.

Soil Environmental Investigation of Plastic Film House in Chonnam Area (전남지역 시설재배 토양환경 실태조사)

  • Kim, Hee-Kwon;Park, In-Jin;Kim, Joung-Keun;Kim, Sang-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.40-46
    • /
    • 2000
  • The investigation and the analysis of soil chemical properties, microbial flora and cultural practices in plastic house of 60 farms (pepper 20, cucumber 20, oriental melon 20) were conducted in Chonnam area film. An amount of fertilizer application of farms was more than that of standard fertilizer application. That was phosphate at two and a half times, potassium at twice and manure at three times the amount of standard application. It was inferred that excessive fertilizer application would lead to salts accumulation in soil. Continuous cropping injury would be incurred by excesive salts accumulation in soil. Even if inorganic elements in soil culturing peppers, cucumbers and oriental melons were greater than optimum level, base-saturation degree of soil culturing peppers, cucumbers and oriental melons was 40:18:12, 55:16:14 and 40:27:11 respectively. That was lower than the optimum levels (60:15:5). Therefore, crops would be affected by uptake inhibition by nutrition imbalance. Density of Fusarium is related to plant decease in soil i.e. pepper $26.2{\times}10^2\;cfu\;g^{-1}$, cucumber $75.8{\times}10^2\;cfu\;g^{-1}$ and oriental melon $6.5{\times}10^2\;cfu\;g^{-1}$. B/F of soil planted with pepper, cucumber and oriental melon was 91.2, 80.4 and 18.8, respectively.

  • PDF

Preparation of NH4+-β"-alumina as a Protonic Solid Electrolyte by Ion Exchange Reaction (이온교환반응에 의한 양성자 고체 전해질 NH4+-β"-alumina의 제조)

  • Lee, Jun-Hee;Han, Choon-Soo;Lee, Sung-Tae;Lee, Ki-Moon;Lee, Dae-Han;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.255-260
    • /
    • 2011
  • $NH_4{^+}-{\beta}^{{\prime}{\prime}}$-alumina which is expected to an inorganic solid electrolyte of high temperature polymer electrolyte membrane fuel cells (PEMFC) was prepared by ion-exchange reaction of $K^{+}-{\beta}^{{\prime}{\prime}}$-alumina pellet with $NH_4NO_3$ aqueous solution and molten $NH_4NO_3$ salts as an ion-exchange medium in the autoclave and the heating mentle reaction. In the autoclave reaction, the concentrations of $NH_4NO_3$ solution was chosen at 5 and 10 M. Each ion-exchange reaction was carried out at 130, 150, 170, and $200^{\circ}C$ for 2, 4, 6 and 8 h. In the heating mentle reaction, ion-exchange was performed at $200^{\circ}C$ for 2, 4, 6 and 8 h with molten $NH_4NO_3$ salts. In order to determine the effect of reaction times, each ion-exchange reaction was repeated 3 times. The phase stability and the ion-exchange rate of $NH_4{^+}-{\beta}^{{\prime}{\prime}}$-alumina were analyzed by XRD and ICP.

Effects of Nitrogen Sources in the Fermentation of Petroleum Hydrocarbon (石油炭化水素醱酵에 있어서의 窒素源의 影響)

  • Tai Won Park;Kim, Tae Yeong;Hui Young Yun
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.224-228
    • /
    • 1973
  • In the fermentation for preparation of petroprotein by Rhodotorula sp. in $C_{12}{\sim}C_{14}$n-alkane mixture it was investigated how the effects due to the difference of chemical form of the nitrogen sources are, that is, how the inorganic nitrogen sources such as nitrates and ammonium salts and organic nitrogen source such as urea effect on the view of fermentation time and yield and how the ratios of nitrogen to carbon with $NaNo_3$ effect. Then following results were obtained: the time required to maximum growth, when $NaNo_3$ or $(NH_4)_2SO_4$ was used as nitrogen source, was 40 hrs. and 45 hrs., respectively, but when urea was used, it was 66 hrs. much longer than above nitrogen sources. On the view of yield, however, in use of the both inorganic sources, when the yield is represented as consumption of 0.1 N-NaOH, it was 0.36 and 0.38 ml, respectively, but, in the case of urea, it amounted to 0.78 ml. In the effect of the ratios of nitrogen to carbon in medium, when n-alkane mixture was added in 1 % (vol.) and N/C with $NaNo_3$ was 0.2 the best results were obtained and generally the higher the value of the ratio the better growth effects were shown.

  • PDF

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments (해양유류오염정화를 위한 유류분해 미생물제제의 평가)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1599-1606
    • /
    • 2011
  • To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.

Technology Trend in Ionic Liquids (이온성 액체의 기술 동향)

  • Lee, Hyunjoo;Lee, Je Seung;Ahn, Byoung Sung;Kim, Hoon Sik
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.595-602
    • /
    • 2005
  • Ionic liquids (ILs) are the ionic salts pertaining to liquid-state at lower temperature than $100^{\circ}C$. ILs have attracted attention as new media because of their peculiar chemical, physical or electrical properties such as low volatility, nonflammability, liquid-phase stability at high temperature, high ability in solvating organic, inorganic or polymeric materials, and high ionic conductivity. Since the properties can be modified by assembling the pair using various anions and cations, ILs are often called designer solvents. In addition, ILs have been expected as new green media to replace the volatile organic solvents, which have been widely used in chemical, energy, material, and electronic industries, as well as to enhance the reaction activity and selectivity. In this review paper, the structures, properties, applications, and technology trend of ILS are introduced.

Theoretical Studies on the Alkylidene Silylenoid H2C = SiLiF and Its Insertion Reaction with R-H (R = F, OH, NH2)

  • Tan, Xiaojun;Wang, Weihua;Li, Ping;Li, Qingyan;Cheng, Lei;Wang, Shufen;Cai, Weiwang;Xing, Jinping
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1349-1354
    • /
    • 2010
  • The geometries and isomerization of the alkylidene silylenoid $H_2C$ = SiLiF as well as its insertion reactions with R-H (R = F, OH, $NH_2$) have been systematically investigated at the B3LYP/6-311+$G^*$ level of theory. The potential barriers of the three insertion reactions are 97.5, 103.3, and 126.1 kJ/mol, respectively. Here, all the mechanisms of the three reactions are identical to each other, i.e., an intermediate has been formed first during the insertion reaction. Then, the intermediate could dissociate into the substituted silylene ($H_2C$ = SiHR) and LiF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the three reactions are -36.4, -24.3, and 3.7 kJ/mol, respectively. Compared with the insertion reaction of $H_2C$ = Si: and R-H (R = F, OH and $NH_2$), the introduction of LiF makes the insertion reaction occur more easily. Furthermore, the effects of halogen (F, Cl, Br) substitution and inorganic salts employed on the reaction activity have also been discussed. As a result, the relative reactivity among the three insertion reactions should be as follows: H-F > H-OH > H-$NH_2$.

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • Recently, as large constructions on the coast increase, an application of a surface layer stabilization method which is one of the improvement methods for dredged soft clay has increased. However, there are few studies about this. The purpose of this study is clarifying characteristics of ultra-soft marine clay and hardening agent. Also, it is verifying an optimal mixture ratio of hardening agent through the laboratory tests according to designed experiments and proving by statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil in accordance with the design of experiments. Regression equations between hardening agents materials and unconfined compressive strength were derived from the tests. The applicability of regression equations were also verified by pilot tests. From the test results, it was found that hardening agent materials(cement, slag, fly-ash, inorganic salts, arwin, gypsum etc.) have some effect upon compressive strength. The optimal mixture ratio which satisfies the required compressive strength was derived from the statistical analysis. The effect of ground improvement by cements and hardening agents was confirmed through the pilot tests. This study will suggest data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

A Study on the Factors of Fenton-oxidation of MTBE in Water and Soil (Fenton-oxidation에 의한 MTBE(Methyl Tertiary Butyl Ether)처리시의 영향인자에 관한 연구)

  • 전은미;박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.63-69
    • /
    • 1998
  • The treatment of soils and water contaminated with MTBE using the Fenton oxidation was investigated. The effects of dosage of $H_{2}O_{2}$, and Fe$^{2+}$ concentrations, and solution pH on transformation and mineralization in soil were evaluated. Generation of TBA and acetone following Fenton-oxidation of MTBE in water and generation of acetone following Fenton-oxidation of TBA were observed. Therefore TBA and acetone are degradation intermediates of MTBE. There was a large difference of treatment efficiency in Fenton oxidation of MTBE between soil and water system. This may be caused by the complex nature of soil, soil organic matter which can consumed OH $\cdot$ radicals, and interacting with inorganic-soil constituents. The pH of soil was observed to have a significant effect on the chemical oxidation efficient of MTBE in soil The data demonstrated that optimal pH range were pH 3~4 and around 6. The soil batch studies demonstrated that treatment efficiency of MTBE was enhanced by adding additional ferrous salts but Fenton-oxidation occurred in no additional iron which indicated that iron in soil can catalyze the Fenton-oxidation. The most effective parameter of Fentonoxidation was $H_{2}O_{2}$/Fe$^{2+}$ ratio which theocratical ratio is 0.5. The optimal range of this ratio was found to be 0.6~2.3. In evaluating effect of $H_{2}O_{2}$ dosage on treatment efficiency, the increase of $H_{2}O_{2}$ did not always lead to increase of decompositions of MTBE in soil. Fenton oxidation was effective in destroying MTBE in aqueous extracts of contaminated soil and water. Experimental data provided evidence that the Fenton oxidation can effectively remediate MTBE-contaminated water and soil.

  • PDF

The Preparation of Storage-Stable Liquid Dyes by Counter Diffusion (역확산을 이용한 액체염료의 제조)

  • Park, Jong-Sang;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.399-410
    • /
    • 1991
  • New separation process was developed for the preparation of storage-stable liquid dyes. The extent of aggregation of dye molecules was measured with respect to storage time of liquid dyes under different salt environments. Hollow-fiber membranes were modified by immobilization of inorganic crystals onto the surface of membrane. Using surface-treated membranes, counter diffusion technology was introduced to selectively remove salts from dye solution. The separation factors were 10-700, and the loss of dye molecules was less than 0.4 %. Membrane permeabilities for sodium ions($U_{M,Na}$) and dye molecules($U_{M,Dye}$) were found to be 2.75 and $0.72l/m^2/hr$, respectively, in the case of surface-treated membranes. The effects of various operating parameters on desalting efficiency were also investigated.

  • PDF