Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.255

Preparation of NH4+-β"-alumina as a Protonic Solid Electrolyte by Ion Exchange Reaction  

Lee, Jun-Hee (Department of Materials Chemistry and Engineering, Konkuk University)
Han, Choon-Soo (Department of Materials Chemistry and Engineering, Konkuk University)
Lee, Sung-Tae (Department of Materials Chemistry and Engineering, Konkuk University)
Lee, Ki-Moon (Department of Materials Chemistry and Engineering, Konkuk University)
Lee, Dae-Han (Department of Materials Chemistry and Engineering, Konkuk University)
Lim, Sung-Ki (Department of Materials Chemistry and Engineering, Konkuk University)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 255-260 More about this Journal
Abstract
$NH_4{^+}-{\beta}^{{\prime}{\prime}}$-alumina which is expected to an inorganic solid electrolyte of high temperature polymer electrolyte membrane fuel cells (PEMFC) was prepared by ion-exchange reaction of $K^{+}-{\beta}^{{\prime}{\prime}}$-alumina pellet with $NH_4NO_3$ aqueous solution and molten $NH_4NO_3$ salts as an ion-exchange medium in the autoclave and the heating mentle reaction. In the autoclave reaction, the concentrations of $NH_4NO_3$ solution was chosen at 5 and 10 M. Each ion-exchange reaction was carried out at 130, 150, 170, and $200^{\circ}C$ for 2, 4, 6 and 8 h. In the heating mentle reaction, ion-exchange was performed at $200^{\circ}C$ for 2, 4, 6 and 8 h with molten $NH_4NO_3$ salts. In order to determine the effect of reaction times, each ion-exchange reaction was repeated 3 times. The phase stability and the ion-exchange rate of $NH_4{^+}-{\beta}^{{\prime}{\prime}}$-alumina were analyzed by XRD and ICP.
Keywords
beta alumina; solid electrolyte; ion-exchange; phase stability; PEMFC;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. F. Oetjen, V. M. Schmidt, U. Stimming, and F. Trila, J. Electrochem. Soc., 143, 3838 (1996).   DOI   ScienceOn
2 O. Li, R. He, J, Gao, J. Q. Jensen, and N. J. Bjerrum, J. Electrochem. Soc., 150, A1599 (2003).   DOI   ScienceOn
3 I. Honma, Y. Takeda, and J. M. Bae, Solid State Ionics, 120, 255 (1999).   DOI   ScienceOn
4 P. Staiti, M. Minutori, and S. Hocevar, J. Power Sources, 90, 231 (2000).   DOI   ScienceOn
5 I. Gautier-Luneau, A. Denoyelle, J. Y. Sanchez, and C. Poinsignon, Electrochim. Acta, 37, 1615 (1992).   DOI   ScienceOn
6 B. Baradie, C. Poinsignon, J. Y. Sanchez, Y. Piffard, G. Vitter, N. Bestaoui, D. Foscallo, A. Denoyelle, D. Delabouglise, and M. Vaujany, J. Power Sources, 74, 8 (1998).   DOI   ScienceOn
7 M. L. Lopez, V. Compan, J. Garrido, E. Riande, and J. L. Acosta, J. Electrochem. Soc., 148, E372 (2001).   DOI   ScienceOn
8 P. L. Antonucci, A. S. Ariso, P. Creti, F. Rammunni, and V. Antonucci, Solid State Ionics, 125, 431 (1998).
9 G. C. Farrington and J. L. Briant, Proc. Intern. Con. Lake Geneva, Wisconsin, 395 (1979).
10 C. R. Peters, M. Bettman, J. W. Moore, and M. D. Glick, Acta Crystallogr, B27, 1826 (1971).
11 A. P. de Kroon, G. W. Schaefer, and F. Aldinger, Chem. Mater, 7, 878 (1995).   DOI   ScienceOn