• 제목/요약/키워드: inner joints

검색결과 58건 처리시간 0.028초

초고속 열차 시스템을 위한 튜브 구조물의 기밀성 평가 : II. 시스템 실험 및 파라메터 해석 (Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: II. System Test and Parametric Analysis)

  • 박주남;김이현;남성원
    • 한국철도학회논문집
    • /
    • 제14권2호
    • /
    • pp.151-159
    • /
    • 2011
  • 본 논문에서는 시공이음 및 세그먼트 연결부 등 불연속 구간을 포함하고 있는 튜브 구조물에 대한 기밀성 평가를 위해 실험에 기초한 연구를 수행하였다. 실제 진공튜브 시스템을 위해 적용 가능한 콘크리트 라이닝을 최대한 모사할 수 있도록 콘크리트 관 1개로 구성된 일체형 튜브(N1) 1기, 동 콘크리트 관 두 개를 연결시킨 연결식 튜브 시험체(N2) 1기, 그리고 콘크리트 세그먼트형 튜브(S) 1기 등 총 3기의 시험체를 제작하여 각 시험체에 대해 내부 기압을 0.1atm로 낮춘 후 시간에 따른 내부 기압의 변화를 측정하였다. 기밀성 실험 결과 얻어진 흐름 곡선으로부터 시스템의 등가 투기계수를 산출하였는데 이음부가 많을수록 시스템의 등가투기계수는 높아지는 경향을 보였다. 또한 실험 결과를 바탕으로 가정된 튜브 단면 변화에 따른 기밀성의 민감도를 해석적으로 분석하였는데 튜브 구조물의 두께 및 직경이 커질수록 시스템 기밀성이 더 향상될 뿐 아니라 기밀성 보강의 효과가 더욱 커진다는 것을 알 수 있었다.

유도 허벅다리걸기 기술 발휘 시 받기 자세에 따른 하지관절의 kinetic 분석 (The Kinetic Analysis of the Lower Extremity Joints when Performing Uchi-mata by Uke's Posture in Judo)

  • 윤현
    • 한국운동역학회지
    • /
    • 제15권2호
    • /
    • pp.167-183
    • /
    • 2005
  • The purpose of this study was to analyze the kinetical variables of the lower extremity joints when performing uchimata(inner thigh reaping throw) by uke(receiver)'s two posture(shizenhon tai), jigohon tai), by voluntary resistance level(VRL) in judo. The subjects, who were for 3 male Korean national representative judokas(elite group : EG) and 3 male representative judokas of Korean University(non-elite group: NEG), and were filmed 4 DV video cameras(60fields/sec.), that posture of uke were shizenhon-tai (straight natural posture), jigohon-tai(straight defensive posture), VRL of uke was 0%. The selected trials were subject to 3-dimensional film motion analysis and ground reaction force(MRF) analysis. The kinetical variable of this study were temporal, postures( ankle and knee angle of attacking leg), that were computed through video film analysis, MRF at events were obtained from the ground-reaction force analysis by AMTI force plate system. When performing uchi-mata according to each posture and by VRL, from the data analysis and discussion, the conclusions were as follows : 1) Temporal variables : total time-required(TR) when performing uchi-mata was shown EG 0.13sec the shorter than NEG(o.77sec.) in shizenhon-tai. and EG 0.17sec the shorter than NEG(o.76sec.) in jigonhon-tai. Also, all of two groups' jigohon-tai(0.68sec.) were faster than shizenhon-tai(0.71 sec.). 2) The posture variables : The angle of ankle in attacking when performing were plantar flexion in EG, and dorsi flexion in NEG by shizenhon-tai and jigohon-tai posture. The angle of knee in attacking when performing were extension in EG and NEG, but range of extension in EG were larger than in NEG. 3) MRF : Vertical MRF when performing uchi-mata was shown the strongest in the 2nd stage of kake phase(2.23BW) by EG in both posture, and it was same value by NEG(2.23BW), but shizenhon-tai (2.28BW), jigohon-tai(1.64BW), respectively.

변형 트랙 메커니즘을 이용한 등반로봇 설계 (Design of a Transformable Track Mechanism for Wall Climbing Robots)

  • 이기욱;서근찬;김황;김선호;전동수;김홍석;김종원
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.178-184
    • /
    • 2012
  • This paper presents a transformable track mechanism for wall climbing robots. The proposed mechanism allows a wall climbing robot to go over obstacles by transforming the track shape, and also increases contact area between track and wall surface for safe attachment. The track mechanism is realized using a timing belt track with one driving actuator. The inner frame of the track consists of serially connected 5R-joints and 1P-joint, and all joints of the inner frame are passively operated by springs, so the mechanism does not require any actuators and complex control algorithms to change its shape. Static analysis is carried out to determine design parameters which enable $90^{\circ}$ wall-to-wall transition and driving over projected obstacles on wall surfaces. A Prototype is manufactured using the transformable track on which polymer magnets are installed for adhesion force. The size of the prototype is $628mm{\times}200mm{\times}150mm$ ($Length{\times}Width{\times}Height$) and weight is 4kgf. Experiments are performed to verify its climbing capability focusing on $90^{\circ}$ wall to wall transition and driving over projected obstacle.

Effect of curing condition on mechanical properties of scarf-repaired composite laminates

  • Cheng, Xiaoquan;Zhang, Jie;Cheng, Yujia;Guo, Xin;Huang, Wenjun
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.419-429
    • /
    • 2020
  • Composite structures are generally pressurized at both sides when repaired by the scarf repair method. But single-face vacuum bag curing (SVC) may be used in some practical scarf repair of penetration damage due to the low accessibility of composite structures, which can decrease bonding quality and may reduce structural mechanical properties. In this paper, experimental investigations were conducted on tensile and compressive properties of scarf-repaired composite laminates using SVC and double-face vacuum bag curing (DVC) in four hygrothermal environments. Finite element models of composite scarf joints with voids were established to further explore the failure mechanism of scarf-repaired laminates. Results show that the curing condition hardly affects tensile and compressive properties of the repaired laminates though it significantly affects the bonding quality with adhesive inner voids. Failure loads of scarf joints almost keep unchanged with adhesive voids increasing.

Effect of reinforcing details on seismic behavior of RC exterior wide beam-column joint

  • Jae Hyun Kim;Seung-Ho Choi;Sun-Jin Han;Hoseong Jeong;Jae-Yeon Lee;Kang Su Kim
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.283-296
    • /
    • 2023
  • This paper presents experimental and numerical studies of seismic performance on reinforced concrete (RC) wide beam (WB) joints. Two RC-WB joint specimens and one conventional RC joint specimen were fabricated using the reinforcing details of longitudinal reinforcing bars in a beam as a variable, and quasi-static cyclic loading tests were performed. The results were used to compare and analyze the load-drift ratio relationship, failure mode, and seismic performance of the specimens quantitatively. In addition, a finite element (FE) analysis of the RC-WB joint was conducted, and the rationality of the FE model was validated by comparing it with the test results. Based on the FE model, a parametric study was conducted, where the ratio of longitudinal reinforcing bars placed on the outer and inner parts of the joint (𝜌ex/𝜌in) was a key variable. The results showed that, in the RC-WB joint, an increase of 𝜌ex/𝜌in leads to more severe damage to concrete, which reduces the seismic performance of the RC-WB joints.

낙상경험 여성노인의 하지 분절 각도와 근전도 차이 (Differences in Angle of the Lower Extremities and Electromyography of Elderly Women Experienced a Fall)

  • 전경규;박광동;박세환;강영석;김대근
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.245-255
    • /
    • 2009
  • 본 연구는 낙상을 경험한 여성노인 20명을 각각 10명씩 연령으로 집단을 구분하고 보행 시 하지관절의 협응 능력을 분석하여 운동과학적인 기초자료를 제시하고, 불안정적인 측면의 요소에 효과적으로 대처할 수 있도록 하기 위한 것이다. 이를 위해 보행 시 하지관절의 균형에 대한 기전과 차이를 동작분석과 근전도를 이용하여 비교 분석하여 다음과 같은 결론을 얻었다. 첫째, 보행 시 고관절의 움직임에서 연령증가로 인해 충분하지 못한 지지역할로 보행자세가 저하되어 안정적 이지 못한 패턴을 보였다. 둘째, 무릎관절의 움직임에서 좌우측의 보행패턴이 상이하게 이루어지는 경향을 나타내었다. 셋째, 발목관절의 움직임에서 연령증가와 함께 활보패턴이 비정상적인 경향을 나타내었다. 또한 보행 시 하지 주요근육의 활성정도에 대해 대퇴직근과 대퇴이두근은 무릎의 굴곡을 막기 위해 근수축 활성이 증가되어 전진하는 전기적 특성을 보였고, 전경골근과 내측비복근은 이동 시 높은 전기적 수요를 나타내어 저측굴곡의 비율을 줄여 보행하는 특성을 나타내었다.

마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스 (Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet)

  • 장동환
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

유기압 현수장치의 반능동 제어 구현에 관한 연구 (Practical Semiactive Control of Hydropnematic Suspension Units)

  • 이윤복;송오섭
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.9-21
    • /
    • 2003
  • This paper describes the practical implementation of a semiactive hydropneumatic suspension system to provide the high off-road performance of military tracked vehicles. Real gas behavior of a spring system, frictional forces of joints, and the dynamics of a continuously variable damper are considered. The control system is consisted of two control loops, an outer loop calculates a target spool position which can deliver the required damping force and an inner loop tracks the required spool position. Dynamic tests of the one axis model show that the semiactive suspension system considerably reduces the acceleration as well as velocity and displacement of the sprung mass than the passive one.

Torque Shear형 고장력 볼트 이음부의 피로거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Behavior of Torque Shear Type High Tension Bolted Joints)

  • 장동일;이성욱
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.151-160
    • /
    • 1996
  • The fatigue test under the constant amplitude repeated loading is performed to investigate the fatigue behavior of the Torque Shear type high tension bolted joint which is able to manage the axial force uniformly. From the test results, it's known that the reduction of the axial force of T/S bolt followed by the elasped time is similar to that of the high tension bolts. The difference of relaxation is not occurred according to the position of bolts, the size of the introduced axial force but the effect of the variation of temperature is large. In the reduction of the axial force followed by the cumulation of the fatigue load, the outer bolt is larger than the inner bolt. This result depends on the difference in the distribution of the non-slip zone. The variation of the surface roughness affects the slip and the reduction of the anal force.

  • PDF

Life Prediction of High Pressure Hydraulic Hose Assemblies by the Impulse Test

  • KIM, Hyoung-Eui;LEE, Yong-Bum;Kwon, Young-Il
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.209-215
    • /
    • 2004
  • Flexible hydraulic hose assembly that consists of hose and joints is used widely on various construction heavy equipments, agricultural machines, motor vehicles, and industrial heavy machines that require flexibility on hydraulic pipelines. It is classified by the maximum usage pressure which is determined by the winding layers of coiling steel wire and the inner diameter of the hoses. In this paper, we designed and performed an accelerated life test for assessing the reliability of a flexible hydraulic hose assembly. In the proposed accelerated life test, typical impulse pressure testing method is applied with the half omega flexing operation to simulate the practical flexing motion of the hose assembly.