• 제목/요약/키워드: inlet spacing

검색결과 15건 처리시간 0.024초

휜이 달린 수소저항합금 베드의 수소저장 성능의 수치적 예측 (Numerical prediction of hydrogen storaging performance of finned metal hybride beds)

  • 김명찬;이상용;구재학
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.520-529
    • /
    • 1998
  • Heat and mass transfer behaviors of metal hydride beds were predicted by solving a set of volume-averaged equations numerically both for the gas (hydrogen) and the solid(metal hydride) phases. Time variations of temperature and hydrogen concentration ratio distributions were obtained for internally cooled, cylindrical-shaped beds with metal(aluminum) fins imbedded in them. Also, time variations of the space-averaged hydrogen concentration ratio were obtained. Temperature and velocity of the coolant, hydrogen pressure at the gas inlet, and the fin spacing were taken as the parameters. The hydrogen absorption rate increases with the higher velocity and the lower temperature of the coolant, and with the decrease of the fin spacing. Increasing of the hydrogen pressure at the gas inlet also promotes the rate of absorption though the increasing rate gradually slows down. The amount of the hydrogen storage per unit volume of the bed decreases with the tighter fin spacing despite of the higher absorption rate ; therefore, there should be an optimum fin spacing for a given volume of the system and the amount of the hydrogen storage, in which the absorption rate is the highest.

노면배수 취약구간의 수리.수문 원인 분석 (A study of the Hydraulic & Hydrologic Causes on the Road Drainage Poor Site)

  • 이만석;이경하;강민수;김흥래
    • 한국도로학회논문집
    • /
    • 제13권2호
    • /
    • pp.133-138
    • /
    • 2011
  • 본 연구의 목적은 도로배수 취약구간에 대한 수리 수문 설계 인자들을 비교 및 검토하여 수리 수문학 측면의 도로 노면배수 취약구간 발생 원인을 규명하는 것이다. 본 연구를 통하여 대부분 노면배수시설의 설계홍수량 산정에 사용하는 합리식의 주요 변수인 강우 강도를 도로의 노면배수유역 특성에 적합하게 산정하기 위해서는 분단위 강우강도식을 사용하여 10분 이하 강우지속시간을 고려해야 하고, 검토가 부족했던 노면 수로에 대하여 실제 자연현상을 적절하게 반영할 수 있는 부등류 흐름 수리해석 방법을 적용해야 하며, 도로 노면 강우의 즉시 배제가 목적인 쌓기부 도수로, 깎기부 집수정, 중분대 집수정 등의 설치간격 결정에는 현재 설계 실무에서 사용 중인 경험공식보다 노면 수리해석 기법을 활용하여 설치간격을 계산하는 것이 합리적이라고 판단되었다.

스트립휜 히트싱크의 냉각특성 (Cooling Characteristics of a Strip Fin Heat Sink)

  • 박철우;김현우;장충선;유갑종
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.16-26
    • /
    • 2005
  • Air-cooled heat sinks are employed in many electronic cooling applications since they provide significant heat transfer enhancement and operational flexibility. Strip-shaped fin heat sink is of interest and needs to be investigated as general cooling products for more applicability. The purposes of this study are to evaluate heat sink performance without bypass flow condition and to determine optimal heat sink geometries. The results show that the decreasing rate of thermal resistance of a heat sink decreases with increasing inlet air velocity, and the increasing rate of pressure drop increases with increasing inlet air velocity, but is not affected by input power. The increasing rate of optimal longitudinal fin spacing is larger than that of transverse fin spacing. The strip fin heat sink tested in this study showed better cooling performance compared to that of other plate fin type.matism. 2004; 50(11): 3504-3515.

선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구 (A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type)

  • 이종주;안강수;서종무
    • 한국군사과학기술학회지
    • /
    • 제24권2호
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.

Analytical and Numerical Results for the Liquid-Lubricated Magnetic Head-disk Interface Using Measured Rheological Data

  • Streator, Jeffrey L.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.93-98
    • /
    • 1995
  • To increase the information storage density in magnetic disk files, the head, the headdisk spacing must be reduced. This has motivated the investigation of alternatives to the conventional air-lubricated head-disk interface (HDI), which operates at a spacing of about 100 nm. One such alternative under consideration is the liquid-lubricated bearing. To properly model the HDI with a liquid bearing it is necessary to incorporate the theological properties of liquid lubricants at high shear rates. These rheological properties themselves are most easily measured within the HDI. Recently, some question has arisen in the literature concerning the interpretation of the frictional data acquired in this manner. In this study analytical and numerical solutions of the Reynolds eqn. are applied to the starved, liquid lubricated HDI to provide some validation of the rheological data reported the author and coworkers (Streator et al., 1994). Results of the analysis highlight the importance of the inlet taper region in determining the equilibrium configuration of the starved HDI even when only a small fraction of its length is wetted by the lubricant.

배플수에 따른 원통다관형 열교환기 성능에 관한 실험 적 연구 (An Experimental Study of Shell and Tube Heat Exchanger Performance with Baffle Spacing)

  • 이육형;김순영;박명관
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1748-1755
    • /
    • 2001
  • The shell and tube heat exchangers were introduced to apply to a big capacity condenser and a high pressure feed water heater for power plant in the beginning of 1990s. Design and manufacturing technology fur shell and tube heat exchangers have been developed until now. But it is very difficult to calculate the expected performance characteristics of the shell and tube heat exchanger, because there are many design parameters to be considered according to internal structure and the shell side heat transfer mechanism complicately related to the design parameters. Design parameters to be considered in the design stage of shell and tube heat exchanger are shell and tube side fluids, flow rate, inlet and outlet temperature, physical properties, type of heat exchanger, outer diameter, thickness, length of tube, tube arrangement, tube pitch, permissive pressure loss on both sides, type of baffle plate, baffle cutting ratio. The propose of study is an analysis TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with changing a number of baffles(3, 5, 7, 9, 11) and tubes(16, 20) and determined optimal baffle spacing.

The assessment of the performance of drug-eluting stent using computational fluid dynamics

  • Seo, Tae-Won;Barakat, Abdul I.
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.281-288
    • /
    • 2009
  • Numerical investigations have been conducted on the assessment of the performance of drug-eluting stent. Computational fluid dynamics is applied to investigate the flow disturbances and drug distributions released from the stent in the immediate vicinity of the given idealized stent in the protrusion into the flow domain. Our simulations have revealed the drug concentration in the flow field due to the presence of a drug-eluting stent within an arterial segment. Wall shear stress increases with Reynolds number for a given stent diameter, while it increases with stent diameter for a given Reynolds number. The drug concentration is dependent on both Reynolds number and stent geometry. In pulsatile flow, the minimum drug concentration in the zone of inter-wire spacing occurs at the maximum acceleration of the inlet flow while the maximum drug concentration gains at the maximum deceleration of the inlet flow. These results provide an understanding of the flow physics in the vicinity of drug-eluting stents and suggest strategies for optimal performance of drug-eluting stent to minimize flow disturbance.

Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow

  • Sharma, Swati;Maiti, Dilip K.;Alam, Md. Mahbub;Sharma, Bhupendra K.
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.65-75
    • /
    • 2019
  • A heated square cylinder (with height $A^*$) is kept parallel to the cold wall at a fixed gap height $0.5A^*$ from the wall. Another adiabatic rectangular cylinder (of same height $A^*$ and width $0.5A^*$) is placed upstream in an inline tandem arrangement. The spacing between the two cylinders is fixed at $3.0A^*$. The inlet flow is taken as Couette-Poiseuille flow based non-linear velocity profile. The conventional fluid (also known as base fluid) is chosen as water (W) whereas the nanoparticle material is selected as $Al_2O_3$. Numerical simulations are performed by using SIMPLE algorithm based Finite Volume approach with staggered grid arrangement. The dependencies of hydrodynamic and heat transfer characteristics of the cylinder on non-dimensional parameters governing the nanofluids and the fluid flow are explored here. A critical discussion is made on the mechanism of improvement/reduction (due to the presence of the upstream cylinder) of heat transfer and drag coefficient, in comparison to those of an isolated cylinder. It is observed that the heat transfer increases with the increase in the non-linearity in the incident velocity profile at the inlet. For the present range studied, particle concentration has a negligible effect on heat transfer.

도로 빗물받이 유입구의 차집유량 산정식 (Intercepted flow equation at grate inlet on road)

  • 김정수;곽상호;류택희;윤세의
    • 한국수자원학회논문집
    • /
    • 제49권6호
    • /
    • pp.537-549
    • /
    • 2016
  • 일반적으로 쇠살대 빗물받이는 도로 표면유출 흐름을 차집하여 도시배수 시설로 배제하기 위하여 설치된다. 빗물받이의 규모 및 설치간격을 결정하기 위하여 빗물받이 차집유량 산정식이 필요하다. 그러므로 쇠살대 빗물받이 유입구의 차집능력 분석이 필요하다. 본 연구에서는 도로 빗물받이의 차집유량 산정을 위해 수리실험모형을 제작하여 720회의 실험을 실시하였다. 빗물받이 제원은 현재 대부분의 국도에 설치되는 크기인 $40{\times}50cm$, $40{\times}100cm$$40{\times}150cm$를 Froude 상사법칙을 이용하여 1/2로 축소 모형을 제작하였다. 측구의 유량은 도로의 차선(2~4차선), 경사(도로 종경사 2~10 %, 측구 횡경사 2~10 %) 및 설계빈도(최대 30년)을 고려하였다. 실험 결과 측구의 횡경사가 커질수록 빗물받이로 유입되는 유량은 증가하였으며, 빗물받이 유입부의 길이가 증가함에 따라 유입부 측면부를 통한 횡유입량을 증가시켜 빗물받이 유입부의 차집효율을 증가시켰다. 실측 차집유량을 이용하여 회귀분석 실시하여 빗물받이 유입구 크기별 차집유입량 산정식을 도출하였다. 기존 경험식과 비교한 결과, 도출된 산정식은 상향된 빈도를 반영한 빗물받이 유입부의 차집유량을 보다 정확하게 산정하였으며, 도로 배수시설 설계에 기초자료로 활용이 가능할 것으로 판단된다.

Heat Transfer and Frictions in the Rectangular Divergent Channel with Ribs on One Wall

  • Lee, MyungSung;Ahn, SooWhan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.352-357
    • /
    • 2016
  • An investigation of ribbed divergent channel was undertaken to determine the effect of rib pitch to height ratio on total friction factor and heat transfer results in the fully developed regime. The ribbed divergent rectangular channel with the channel exit hydraulic diameter ($D_{ho}$) to inlet channel hydraulic diameter ($D_{hi}$) ratio of 1.16 with wall inclination angle of 0.72 deg, at which the ratios (p/e) of 6,10, and 14 are considered. The ribbed straight channel of $D_{ho}/D_{hi}=1.0$ were also used. The ribbed divergent wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height 6, 10, and 14. The measurement was run with range of Reynolds numbers from 24,000 to 84,000. The comparison shows that the ratio of p/e=6 has the greatest thermal performance in the divergent channel under two constraints; identical mass flow rate and identical pressure drop.