• 제목/요약/키워드: initial value problems

검색결과 190건 처리시간 0.028초

터널의 지반계수 추정에 대한 Genetic Algorithms의 적용 (The Application of Genetic Algorithms to Estimate the Geotechnical Parameters of Tunnels)

  • 현기환;김선명;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2000
  • This study presents the application of genetic algorithms(GA) to the back analysis of tunnels. GA based on the theory of natural evolution, and have been evaluated very effective for their robust performances, particularly for optimizing structure problems. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. GA can improve this problems through a probabilistic approach. Besides, this technique have two other advantages over the back analysis. One is that it is not significantly affected by the form of problems. Another one is that it can consider two known parameter simultaneously. The propriety of this study is verified as the comparison in the same condition of the back analysis(Gens et al, 1987). In this study, it was performed to estimated the geotechnical parameters in the case of weak rock mass at the Kyung Bu Express railway tunnel. GA have been shown for effective application to a geotechnical engineering.

  • PDF

수치해 검증방법을 이용한 기호 연산 프로그램 성능 비교 (Performance Comparison of Symbolic Manipulation Programs using a Validation Method for Numerical Solution)

  • 양성욱;이상철
    • 한국항공운항학회지
    • /
    • 제23권2호
    • /
    • pp.69-74
    • /
    • 2015
  • We propose a rigorous and practical methodology to evaluate the performance of symbolic manipulation program such as Mathematica, Maple, and Maxima. First, we demonstrate an inverse method to construct the benchmark problems of an initial value problems. The benchmark problems associated with the discrete version of the Chebyshev polynomials provide a rigorous and objective measure to evaluate the performance of symbolic manipulation programs. We compare three symbolic manipulation programs, which are Mathematica, Maple and Maxima, using this methodology. The computation time, the used memory and the perturbation terms are chosen for comparison parameters.

THE VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR ANALYTIC TREATMENT FOR LINEAR AND NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

  • Matinfar, Mashallah;Mahdavi, M.;Raeisi, Z.
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.845-862
    • /
    • 2010
  • In a recent paper, M.A. Noor et al. (Hindawi publishing corporation, Mathematical Problems in Engineering, Volume 2008, Article ID 696734, 11 pages, doi:10.1155/2008/696734) proposed the variational homotopy perturbation method (VHPM) for solving higher dimentional initial boundary value problems. In this paper, we consider the proposed method for analytic treatment of the linear and nonlinear ordinary differential equations, homogeneous or inhomogeneous. The results reveal that the proposed method is very effective and simple and can be applied for other linear and nonlinear problems in mathematical.

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

GLOBAL SOLUTIONS OF SEMIRELATIVISTIC HARTREE TYPE EQUATIONS

  • Cho, Yong-Geun;Ozawa, Tohru
    • 대한수학회지
    • /
    • 제44권5호
    • /
    • pp.1065-1078
    • /
    • 2007
  • We consider initial value problems for the semirelativistic Hartree type equations with cubic convolution nonlinearity $F(u)=(V*{\mid}u{\mid}^2)u$. Here V is a sum of two Coulomb type potentials. Under a specified decay condition and a symmetric condition for the potential V we show the global existence and scattering of solutions.

GLOBAL EXISTENCE FOR VOLTERRA-FREDHOLM TYPE FUNCTIONAL IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS

  • Vijayakumar, V.;Prakash, K. Alagiri;Murugesu, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권1호
    • /
    • pp.17-28
    • /
    • 2013
  • In this paper, we study the global existence of solutions for the initial value problems for Volterra-Fredholm type functional impulsive integrodifferential equations. Using the Leray-Schauder Alternative, we derive conditions under which a solution exists globally.

Numerical Solutions of Fractional Differential Equations with Variable Coefficients by Taylor Basis Functions

  • Kammanee, Athassawat
    • Kyungpook Mathematical Journal
    • /
    • 제61권2호
    • /
    • pp.383-393
    • /
    • 2021
  • In this paper, numerical techniques are presented for solving initial value problems of fractional differential equations with variable coefficients. The method is derived by applying a Taylor vector approximation. Moreover, the operational matrix of fractional integration of a Taylor vector is provided in order to transform the continuous equations into a system of algebraic equations. Furthermore, numerical examples demonstrate that this method is applicable and accurate.

구륜 이동 로봇의 경로추적을 위한 퍼지-신경망을 이용한 제어기 설계 (A Design of Fuzzy-Neural Network Algorithm Controller for Path-Tracking in Wheeled Mobile Robot)

  • 김제현;김상원;이용현;박종국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.255-258
    • /
    • 2003
  • It is hard to centrol the wheeled mobile robot because of uncertainty of modeling, non-holonomic constraint and so on. To solve the problems, we design the controller of wheeled mobile robot based on fuzzy-neural network algorithm. In this paper, we should research the problem of classical controller for path-tracking algorithm and design of Fuzzy-Neural Network algorithm controller. Classical controller acquired different control value according to change of initial position and direction. In this control value having very difficult and having acquired a lot of trial and error Fuzzy is implemented to adaptive adjust control value by error and change of error and neural network is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-neural network controller is effective.

  • PDF

Combining a HMM with a Genetic Algorithm for the Fault Diagnosis of Photovoltaic Inverters

  • Zheng, Hong;Wang, Ruoyin;Xu, Wencheng;Wang, Yifan;Zhu, Wen
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1014-1026
    • /
    • 2017
  • The traditional fault diagnosis method for photovoltaic (PV) inverters has a difficult time meeting the requirements of the current complex systems. Its main weakness lies in the study of nonlinear systems. In addition, its diagnosis time is long and its accuracy is low. To solve these problems, a hidden Markov model (HMM) is used that has unique advantages in terms of its training model and its recognition for diagnosing faults. However, the initial value of the HMM has a great influence on the model, and it is possible to achieve a local minimum in the training process. Therefore, a genetic algorithm is used to optimize the initial value and to achieve global optimization. In this paper, the HMM is combined with a genetic algorithm (GHMM) for PV inverter fault diagnosis. First Matlab is used to implement the genetic algorithm and to determine the optimal HMM initial value. Then a Baum-Welch algorithm is used for iterative training. Finally, a Viterbi algorithm is used for fault identification. Experimental results show that the correct PV inverter fault recognition rate by the HMM is about 10% higher than that of traditional methods. Using the GHMM, the correct recognition rate is further increased by approximately 13%, and the diagnosis time is greatly reduced. Therefore, the GHMM is faster and more accurate in diagnosing PV inverter faults.