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ABSTRACT. In this paper, we study the global existence of solutions for the initial value prob-
lems for Volterra-Fredholm type functional impulsive integrodifferential equations. Using the
Leray-Schauder Alternative, we derive conditions under which a solution exists globally.

1. INTRODUCTION

Various evolutionary processes from fields as diverse as physics, population dynamics, aero-
nautics, economics and engineering are characterized by the fact that they undergo abrupt
changes of state at certain moments of time between intervals of continuous evolution. Be-
cause the duration of these changes are often negligible compared to the total duration of the
process, such changes can be reasonably well-approximated as being instantaneous changes of
state, or in the form of impulses. These process tend to more suitably modeled by impulsive
differential equations, which allow for discontinuities in the evolution of the state. For more
details on this theory and on its applications we refer to the monographs of Lakshmikantham
et al. [15], Samoilenko and Perestyuk [24], Rogovchenko [22, 23] and Hernández [11–13]
for the case of ordinary and partial differential functional differential equations with impulses.
Similarly, for more on ordinary and partial impulsive functional differential equations we refer
to [1, 2, 5–7, 10, 14].

Recently, in [20], the authors studied the global existence for first order Mixed Volterra neu-
tral functional integrodifferential equations in Banach spaces by using Leray-Schauder nonlin-
ear alternative or Krasnoselskii schaefer fixed point theorem. In [4], the authors studied initial
and boundary value problems for nonconvex valued multivalued functional differential inclu-
sions by using a fixed point theorem for contraction multivalued maps due to Covitz and Nadler
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and Schaefer’s theorem combined with lower semicontinuous multivalued operators with de-
composable values. Also in [3], the authors studied second order impulsive functional differ-
ential inclusions by using Schaefer’s theorem combined with a selection of theorem of Bressan
and Colombo for lower semicontinuous multivalued operators with decomposable values. For
recent results on local and global existence for ordinary, functional or neutral integrodifferential
equations see [8, 16, 18, 19, 21, 25–34].

In this paper, we study the global existence of solutions for the initial value problems for
Volterra-Fredholm type functional impulsive integrodifferential equations of the form

(ρ(t)x′(t))′ = f
(
t, xt, x

′(t),

∫ t

0
a(t, s)g(s, xs, x

′(s))ds,

∫ T

0
b(t, s)h(s, xs, x

′(s))ds
)
,

t ∈ I = [0, T ] \ {t1, ..., tm}, (1.1)

∆x|t=tk = Ik(x(t
−
k )), k = 1, ...,m, (1.2)

∆x′|t=tk = Jk(x(t
−
k )), k = 1, ...,m, and (1.3)

x0 = ϕ, t ∈ [−r, 0], and x′(0) = η, (1.4)

where f : I×D×Rn×Rn×Rn → Rn, D = {ψ : [−r, 0] → Rn; ψ is continuous everywhere
except for a finite number of points t̃ at which ψ(t̃−) and ψ(t̃+) are exist with ψ(t̃−) = ψ(t̃)},
g : I × D × Rn → Rn, h : I × D × Rn → Rn, a : I × I → R, b : I × I → R are
continuous functions, ρ is a continuous positive function, ϕ ∈ D and η ∈ Rn, 0 < r < ∞,
0 = t0 < t1 < · · · < tm < tm+1 = T , Ik, Jk ∈ C(Rn,Rn), (k = 1, ...,m). x(t−k ) and x(t+k )
represent the left and right limits of x(t) at t = tk, respectively, ∆x|t=tk = x(t+k )−x(t

−
k ), and

∆x′|t=tk = x′(t+k )− x′(t−k ).
For any continuous function x defined on [−r, T ]\{t1, ..., tm} and any t ∈ [0, T ] we denote

by xt the element of D defined by xt(θ) = x(t + θ), θ ∈ [−r, 0], where yt(·) represents the
history of the state from time t− r, up to the present time t.

This paper will be organized as follows. In Section 2 we will recall briefly some basic
definitions and preliminary facts which are used throughout this paper. In Section 3 we shall
present and prove our main results for the problem (1.1)-(1.4).

2. PRELIMINARIES

In this section, we introduce some basic definitions, notations and preliminary facts which
are used throughout this paper.

Let C([−r, 0],Rn) be the Banach space of continuous functions from [−r, 0] into Rn en-
dowed with the norm

∥ϕ∥ = sup
{
|ϕ(θ)| : −r ≤ θ ≤ 0

}
.

and C([0, T ],Rn) denote the Banach space of all continuous functions from [0, T ] into Rn

normed by

∥x∥∞ = sup
{
|x(t)| : t ∈ [0, T ]}.
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For convenience we put:

∥x∥r = sup{|x(t)| : −r ≤ t ≤ T},
∥x∥0 = sup{|x(t)| : t ∈ I},
∥x∥1 = sup{|x′(t)| : t ∈ I},
∥x∥∗ = max{∥x∥r, ∥x∥1},
∥x∥T = max{∥x∥0, ∥x∥1}.

In order to define the solution of (1.1)-(1.4), we introduce the following space:

PC =
{
x : [0, T ] → Rn : xk ∈ C([tk, tk+1],Rn), k = 0, ...,m and there existx(t−k ) and

x(t+k ) with x(t−k ) = x(t+k ), k = 1, ...,m
}

which is a Banach space with the norm

∥x∥PC = max{∥xk∥(tk,tk+1], k = 0, ...,m},
where xk is the restriction of x to (tk, tk+1], k = 0, ...,m.

Set Ω = D ∪ PC. Then Ω is a Banach space normed by

∥x∥Ω = max{∥x∥D, ∥x∥PC}, for each x ∈ Ω.

and

PC1 =
{
x : [0, T ] → Rn :xk ∈ C1([tk, tk+1],Rn), k = 0, ...,m and there exist

x′(t−k ) and x′(t+k ) with x′(t−k ) = x′(t+k ), k = 1, ...,m
}

which is a Banach space with the norm

∥x∥PC1 = max{∥xk∥(tk,tk+1], k = 0, ...,m},
where xk is the restriction of x to (tk, tk+1], k = 0, ...,m.

Set Ω1 = D ∪ PC1. Then Ω1 is a Banach space normed by

∥x∥Ω1 = max{∥x∥D, ∥x∥PC1}, for each x ∈ Ω1.

Definition 2.1. A function x ∈ Ω∩Ω1 is called solution of the initial value problem (1.1)-(1.4)
if x satisfies the following integral equation

x(t) = ϕ(0) + ρ(0)

∫ t

0

ds

ρ(s)
η +

∫ t

0

1

ρ(s)

∫ s

0
f
(
τ, xτ , x

′(τ),∫ τ

0
a(τ, σ)g

(
σ, xσ, x

′(σ)
)
dσ,

∫ T

0
b(τ, σ)h

(
σ, xσ, x

′(σ)
)
dσ
)
dτds

+
∑

0<tk<t

[
Ik(x(t

−
k )) + Jk(x(t

−
k ))

∫ t

tk

ρ(tk)

ρ(s)
ds
]
, t ∈ I.

The considerations of this paper are based on the following fixed point result [9].
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Lemma 2.1 (Leray-Schauder’s Alternative Theorem). Let S be a closed convex subset of a
normed linear space E and assume that 0 ∈ S. If F : S → S be a completely continuous
operator, i.e. it is continuous and the image of any bounded set is included in a compact set
and let

Φ(F ) = {x ∈ S : x = λFx, for some 0 < λ < 1}.

Then either Φ(F ) is unbounded or F has a fixed point.

3. GLOBAL EXISTENCE

In this section, we present the global existence results for the initial value problem (1.1)-
(1.4).

Theorem 3.1. Let f : I×D×Rn×Rn×Rn → Rn, g : I×D×Rn → Rn, h : I×D×Rn → Rn,
a : I × I → R, b : I × I → R are continuous functions.

Assume that

Hg There exists a continuous function m1 : I → [0,∞) such that

|g(t, ϕ, ψ)| ≤ m1(t)Ω1(∥ϕ∥+ |ψ|), t ∈ I, ϕ ∈ D, ψ ∈ Rn,

where Ω1 : [0,∞) → (0,∞) is a continuous nondecreasing function.
Hh There exists a continuous function m2 : I → [0,∞) such that

|h(t, ϕ, ψ)| ≤ m2(t)Ω2(∥ϕ∥+ |ψ|), t ∈ I, ϕ ∈ D, ψ ∈ Rn,

where Ω2 : [0,∞) → (0,∞) is a continuous nondecreasing function.
Hf There exists an integrable function p : I → [0,∞) such that

|f(t, u, v, w, y)| ≤ p(t)Ω3(∥u∥+ |v|+ |w|+ |y|), t ∈ I, u ∈ D, v,w, y ∈ Rn,

where Ω3 : [0,∞) → (0,∞) is a continuous nondecreasing function.
Ha There exists a constant L1 such that

|a(t, s)| ≤ L1 for t ≥ s ≥ 0.

Hb There exists a constant L2 such that

|b(t, s)| ≤ L2 for t ≥ s ≥ 0.

HI There exist constants ck such that |Ik(x)| ≤ ck|x|, k = 1, ...,m for each x ∈ Rn.
HJ There exist constants dk such that |Jk(x)| ≤ dk|x|, k = 1, ...,m for each x ∈ Rn.

Then if ∫ T

0
m̂(s)ds <

∫ +∞

c

ds

2Ω3(s) + Ω1(s) + Ω2(s)
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where

m̂(t) = max
{ 1

R

∫ t

0
p(τ)dτ,

1

R
p(t), L1m1(t), L2m2(t)

}
, R = min{ρ(t) : t ∈ I} and

c = ∥ϕ∥+ |η|ρ(0)
∫ T

0

ds

ρ(s)
+

|η|ρ(0)
R

+
m∑
i=1

ck|x(t−k )|+
m∑
i=1

T − tk
R

ρ(tk)dk|x(t−k )|

the initial value problem (1.1)-(1.4) has at least one solution on [−r, T ].

Proof. To prove the existence of a solution of the initial value problem (1.1)-(1.4) we apply
Lemma 4.1. First we obtain the a priori bounds for the solutions of the initial value problem
(1.1)λ − (1.4), λ ∈ (0, 1), where (1.1)λ stands for the equation

(ρ(t)x′(t))′ = λf
(
t, xt, x

′(t),

∫ t

0
a(t, s)g(s, xs, x

′(s))ds,

∫ T

0
b(t, s)h(s, xs, x

′(s))ds
)
,

t ∈ I = [0, T ].

Let x be a solution of the initial value problem (1.1)λ − (1.4). From

x(t) = λϕ(0) + λρ(0)

∫ t

0

ds

ρ(s)
η + λ

∫ t

0

1

ρ(s)

∫ s

0
f
(
τ, xτ , x

′(τ),∫ τ

0
a(τ, σ)g

(
σ, xσ, x

′(σ)
)
dσ,

∫ T

0
b(τ, σ)h

(
σ, xσ, x

′(σ)
)
dσ
)
dτds

+ λ
∑

0<tk<t

[
Ik(x(t

−
k )) + Jk(x(t

−
k ))

∫ t

tk

ρ(tk)

ρ(s)
ds
]
, t ∈ I.

we have, for every t ∈ I ,

|x(t)| ≤ ∥ϕ∥+ |η|ρ(0)
∫ t

0

ds

ρ(s)
+ λ

∫ t

0

1

ρ(s)

∫ s

0
p(τ)Ω3

(
∥xτ∥+ |x′(τ)|+ L1

∫ τ

0
m1(σ)

(×)Ω1(∥xσ∥+ |x′(σ)|)dσ + L2

∫ T

0
m2(σ)Ω2(∥xσ∥+ |x′(σ)|)dσ

)
dτds

+

m∑
i=1

{
ck|x(t−k )|+

T − tk
R

ρ(tk)dk|x(t−k )|
}
.

We consider the function µ given by

µ(t) = sup{|x(s)| : −r ≤ s ≤ t}, t ∈ I.
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Let t∗ ∈ [−r, t] be such that µ(t) = |x(t∗)|. If t∗ ∈ [0, t], by the previous inequality we have,
for every t ∈ I ,

|µ(t)| ≤ ∥ϕ∥+ |η|ρ(0)
∫ T

0

ds

ρ(s)
+

∫ t

0

1

ρ(s)

∫ s

0
p(τ)Ω3

(
µ(τ) + |x′(τ)|+ L1

∫ τ

0
m1(σ)

(×)Ω1(µ(σ) + |x′(σ)|)dσ + L2

∫ T

0
m2(σ)Ω2(µ(σ) + |x′(σ)|)dσ

)
dτds

+

m∑
i=1

ck|x(t−k )|+
m∑
i=1

T − tk
R

ρ(tk)dk|x(t−k )|.

If t∗ ∈ [−r, 0] then µ(t) = ∥ϕ∥ and the previous inequality obvious holds.
Denoting by u(t) the right hand side of the above inequality we have,

u(0) = ∥ϕ∥+ |η|ρ(0)
∫ T

0

ds

ρ(s)
+

n∑
i=1

ck|x(t−k )|+
m∑
i=1

T − tk
R

ρ(tk)dk|x(t−k )|.

and

u′(t) =
1

ρ(t)

∫ t

0
p(τ)Ω3

(
µ(τ) + |x′(τ)|+ L1

∫ τ

0
m1(σ)Ω1(µ(σ) + |x′(σ)|)dσ

+ L2

∫ T

0
m2(σ)Ω2(µ(σ) + |x′(σ)|)dσ

)
dτ

≤ 1

R

∫ t

0
p(τ)Ω3

(
u(τ) + |x′(τ)|+ L1

∫ τ

0
m1(σ)Ω1(u(σ) + |x′(σ)|)dσ

+ L2

∫ T

0
m2(σ)Ω2(u(σ) + |x′(σ)|)dσ

)
dτ, t ∈ I.

Therefore if

v(t) = sup{|x′(s)| : s ∈ I}, t ∈ I,

we obtain

u′(t) ≤ 1

R

∫ t

0
p(τ)Ω3

(
u(τ) + v(τ) + L1

∫ τ

0
m1(σ)Ω1(u(σ) + v(σ))dσ

+ L2

∫ T

0
m2(σ)Ω2(u(σ) + v(σ))dσ

)
dτ, t ∈ I.

On the other hand, by

x′(t) = λ
ρ(0)η

ρ(t)
+ λ

1

ρ(t)

∫ t

0
f
(
τ, xτ , x

′(σ),

∫ τ

0
a(τ, σ)g

(
σ, xσ, x

′(σ)
)
dσ,∫ T

0
b(τ, σ)h

(
σ, xσ, x

′(σ)
)
dσ
)
dτ,
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for any t ∈ I and every s ∈ [0, t], we obtain

|x′(t)| ≤ ρ(0)|η|
R

+
1

R

∫ t

0
p(τ)Ω3

(
u(τ) + |x′(τ)|+ L1

∫ τ

0
m1(σ)Ω1(u(σ) + |x′(σ)|)dσ

+ L2

∫ T

0
m2(σ)Ω2(u(σ) + |x′(σ)|)dσ

)
dτ, t ∈ I,

or

v(t) ≤ ρ(0)|η|
R

+
1

R

∫ t

0
p(τ)Ω3

(
u(τ) + v(τ) + L1

∫ τ

0
m1(σ)Ω1(u(σ) + v(σ))dσ

+ L2

∫ T

0
m2(σ)Ω2(u(σ) + v(σ))dσ

)
dτ, t ∈ I.

Denoting by z(t) the right hand side of the above inequality we have:

z(0) =
ρ(0)|η|
R

, v(t) ≤ z(t), t ∈ I

and

z′(t) =
1

R
p(t)Ω3

(
u(t) + v(t) + L1

∫ t

0
m1(σ)Ω1(u(σ) + v(σ))dσ

+ L2

∫ T

0
m2(σ)Ω2(u(σ) + v(σ))dσ

)
dτ,

≤ 1

R
p(t)Ω3

(
u(t) + z(t) + L1

∫ t

0
m1(σ)Ω1(u(σ) + z(σ))dσ

+ L2

∫ T

0
m2(σ)Ω2(u(σ) + z(σ))dσ

)
dτ, t ∈ I.

Since v(t) ≤ z(t) we have

u′(t) ≤ 1

R

∫ t

0
p(τ)Ω3

(
u(τ) + z(τ) + L1

∫ τ

0
m1(σ)Ω1(u(σ) + z(σ))dσ

+ L2

∫ T

0
m2(σ)Ω2(u(σ) + z(σ))dσ

)
dτ, t ∈ I.

Let

w(t) = u(t) + z(t)+L1

∫ t

0
m1(σ)Ω1(u(σ) + z(σ))dσ

+ L2

∫ T

0
m2(σ)Ω2(u(σ) + z(σ))dσ, t ∈ I.

Then

w(0) = u(0) + z(0) = c, u(t) + z(t) ≤ w(t), t ∈ I,
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and

w′(t) = u′(t) + z′(t) + L1m1(t)Ω1(u(t) + z(t)) + L2m2(t)Ω2(u(t) + z(t))

≤ 1

R

∫ t

0
p(τ)Ω3(w(τ))dτ +

1

R
p(t)Ω3(w(t)) + L1m1(t)Ω1(u(t) + z(t))

+ L2m2(t)Ω2(u(t) + z(t))

≤ 1

R
Ω3(w(t))

∫ t

0
p(τ)dτ +

1

R
p(t)Ω3(w(t)) + L1m1(t)Ω1(u(t) + z(t))

+ L2m2(t)Ω2(u(t) + z(t))

≤ m̂(t)
[
2Ω3(w(t)) + Ω1(w(t)) + Ω2(w(t))

]
, t ∈ I.

This implies∫ w(t)

w(0)

ds

2Ω3(s) + Ω1(s) + Ω2(s)
≤
∫ T

0
m̂(τ)dτ <

∫ +∞

c

ds

2Ω3(s) + Ω1(s) + Ω2(s)
, t ∈ I.

This inequality implies that there is a constant K such that w(t) ≤ K, t ∈ I . Then

|x(t)| ≤ µ(t) ≤ u(t), t ∈ I

|x′(t)| ≤ v(t) ≤ z(t), t ∈ I

and hence

∥x∗∥ ≤ ∥x∥r + ∥x∥1 ≤ K.

In the second step we rewrite the initial value problem (1.1)-(1.4) as an integral operator and
will prove that this operator is completely continuous. The proof will be given for the first case
where ϕ(0) = 0.

Consider the space E of all functions x ∈ Ω1 endowed with the norm ∥x∥T .
Then the set

E0 = {x ∈ E : x(0) = 0}

is a subspace of E.
Now define an operator Q : E0 → E by

Qx(t) = ρ(0)

∫ t

0

ds

ρ(s)
η +

∫ t

0

1

ρ(s)

∫ s

0
f
(
τ, xτ , x

′(σ),

∫ τ

0
a(τ, σ)g

(
σ, xσ, x

′(σ)
)
dσ,∫ T

0
b(τ, σ)h

(
σ, xσ, x

′(σ)
)
dσ
)
dτds

+
∑

0<tk<t

[
Ik(x(t

−
k )) + Jk(x(t

−
k ))

∫ t

tk

ρ(tk)

ρ(s)
ds
]
, t ∈ I.
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where

xτ (θ) =

{
x(τ + θ), τ + θ ≥ 0,

ϕ(τ + θ), τ + θ < 0.

Obviously Q(E0) ⊆ E0. It will now be shown that Q is completely continuous.
The continuity of Q follows easily from that of f . For the rest let B be a bounded subset of

E0. Then there exists b ≥ 0 such that ∥x∥T ≤ b, x ∈ B.
Following exactly the same arguments as in the proof of Theorem 3.1 in [17] we can prove

that there exists a compact subset D1 of D such that B̂ ⊆ D1 where B̂ = {xt : x ∈ B, t ∈ I}.
Let now a bounded sequence {xυ} in E0. Then the sequence {xυ}, t ∈ I is bounded in

D and, moreover, there exists a compact subset D1 in D such that xυt ∈ D1 for every υ and
t ∈ I . Thus, if b1 is the bound of {xυ}, it is obvious that the set X = [0, T ]×B ×B(0, b1)×
B(0, b1)×B(0, b1)

(
B(0, b1) is the closed ball in Rn with centre 0 and radius b1

)
is compact

in [0, T ]×D × Rn × Rn × Rn. Then we can prove that

∥Qhυ∥0 ≤ K̂ and ∥(Qhυ)′∥1 ≤ K̂,

where

K = max
{
ρ(0)|η|

∫ T

0

ds

ρ(s)
+M

∫ T

0

s

ρ(s)
ds,

ρ(0)|η|+ TM

R

}
,

and

M = max{|f(t, u, v, w, x)| : (t, u, v, w, x) ∈ X}.

Also the sequence {Qhυ} is equicontinuous. This follows easily from the relations

|Qhυ(t1)−Qhυ(t2)| =
∣∣ ∫ t2

t1

(Qhυ)
′(s)ds

∣∣ ≤ K̂|t1 − t2|

and

|(Qhυ(t1))′ − (Qhυ(t2))
′| ≤ |η|ρ(0)

∣∣ 1

ρ(t1)
− 1

ρ(t2)

∣∣+ M

R
|t1 − t2|

and from the uniform continuity of the function 1
ρ on I .

Thus, by the Arzela-Ascoli theorem the operator Q is completely continuous.
For the proof in the general case when ϕ(0) ̸= 0, we note simply that the transformation

y = x− ϕ(0)
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reduces the initial value problem (1.1)-(1.4)into the following

(ρ(t)y′(t))′ = f
(
t, yt + ϕ(0), y′(t),

∫ t

0
a(t, s)g(s, ys + ϕ(0), y′(s))ds,∫ T

0
b(t, s)h(s, ys + ϕ(0), y′(s))ds

)
, t ∈ I = [0, T ] \ {t1, ..., tm},

∆y|t=tk = Ik(y(t
−
k )), k = 1, ...,m,

∆y′|t=tk = Jk(y(t
−
k )), k = 1, ...,m, and

y0 = ϕ− ϕ(0) = ϕ̂, y′(0) = η,

for which ϕ̂(0) = 0.
Finally, the set Φ(Q) = {x ∈ E0 : x = λQx, λ ∈ (0, 1)} is bounded, as we proved in the

first part. Hence by Lemma 2.1, the operator Q has a fixed point in E0. Then it is clear that the
function

z(t) =

{
x(t), t ∈ [0, T ]

ϕ(t), t ∈ [−r, 0]
is a solution of the initial value problem (1.1)-(1.4).

Hence the proof of the theorem is complete. �
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