• Title/Summary/Keyword: initial stress state

Search Result 207, Processing Time 0.024 seconds

Verification of Direct Back Analysis Software Using FLAC as a Subroutine (FLAC을 이용한 직접법 역해석 소프트웨어의 개발과 검증)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.344-351
    • /
    • 2005
  • Direct back analysis software is coded based on Simplex method using FLAC as a subroutine. For the verification of the software, 12 different cases are assumed combining various displacements in different measuring locations around a tunnel. The number of displacements for cases varies from 3 to 240. It is verified that the exact elasticity and the primary stress state of rock around a tunnel could be found through iterative calculation regardless of the locations and number of displacements and initial values needed for the direct back analysis.

Development of Rotor Shaft Manufacturing Process using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Lee, N.K.;Park, H.C.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.266-270
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to material characteristics, such as, thermal conductivity and high temperature flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld parameters. FE simulation is performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

Prediction of the Structural Safety of a Relief Valve Using Metamodel (메타모델을 이용한 압력방출밸브의 구조안전성 예측)

  • Kim, Nam-Hee;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5763-5768
    • /
    • 2015
  • A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. The commercial software ANSYS/WORKBENCH is utilized for flow and structural analysis. Very high pressure may cause structural problem due to severe stress. The study suggests the design satisfying the structural design requirement

Passive p-y curves for rigid basement walls supporting granular soils

  • Imad, Elchiti;George, Saad;Shadi S., Najjar
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.335-346
    • /
    • 2023
  • For structures with underground basement walls, the soil-structure-interaction between the side soil and the walls affects the response of the system. There is interest in quantifying the relationship between the lateral earth pressure and the wall displacement using p-y curves. To date, passive p-y curves in available limited studies were assumed elastic-perfectly plastic. In reality, the relationship between earth pressure and wall displacement is complex. This paper focuses on studying the development of passive p-y curves behind rigid walls supporting granular soils. The study aims at identifying the different components of the passive p-y relationship and proposing a rigorous non-linear p-y model in place of simplified elastic-plastic models. The results of the study show that (1) the p-y relationship that models the stress-displacement response behind a rigid basement wall is highly non-linear, (2) passive p-y curves are affected by the height of the wall, relative density, and depth below the ground surface, and (3) passive p-y curves can be expressed using a truncated hyperbolic model that is defined by a limit state passive pressure that is determined using available logarithmic spiral methods and an initial slope that is expressed using a depth-dependent soil stiffness model.

Analysis of Research Trends in Monitoring Mental and Physical Health of Workers in the Industry 4.0 Environment (Industry 4.0 환경에서의 작업자 정신 및 신체 건강 상태 모니터링 연구 동향 분석)

  • Jungchul Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.701-707
    • /
    • 2024
  • Industry 4.0 has brought about significant changes in the roles of workers through the introduction of innovative technologies. In smart factory environments, workers are required to interact seamlessly with robots and automated systems, often utilizing equipment enhanced by Virtual Reality (VR) and Augmented Reality (AR) technologies. This study aims to systematically analyze recent research literature on monitoring the physical and mental states of workers in Industry 4.0 environments. Relevant literature was collected using the Web of Science database, employing a comprehensive keyword search strategy involving terms related to Industry 4.0 and health monitoring. The initial search yielded 1,708 documents, which were refined to 923 journal articles. The analysis was conducted using VOSviewer, a tool for visualizing bibliometric data. The study identified general trends in the publication years, countries of authors, and research fields. Keywords were clustered into four main areas: 'Industry 4.0', 'Internet of Things', 'Machine Learning', and 'Monitoring'. The findings highlight that research on health monitoring of workers in Industry 4.0 is still emerging, with most studies focusing on using wearable devices to monitor mental and physical stress and risks. This study provides a foundational overview of the current state of research on health monitoring in Industry 4.0, emphasizing the need for continued exploration in this critical area to enhance worker well-being and productivity.

Seismic performance evaluation of fiber-reinforced prestressed concrete containments subject to earthquake ground motions

  • Xiaolan Pan;Ye Sun;Zhi Zheng;Yuchen Zhai;Lianpeng Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1638-1653
    • /
    • 2024
  • Given the unpredictability of the occurrence of the earthquake and other potential disasters into consideration, the nuclear power plant may be confronted with beyond design-basis earthquake load in the future. The containment structure may be severely damaged under such severe earthquake loading, increasing the risk of containment concrete cracking and potential radioactive materials leaking. Moreover, initial damage caused by the earthquake may significantly alter the pressure performance of the containment under follow-up internal pressure. To compromise the dangers of beyond design-basis earthquake to the containment, an alternative of replacing the conventional concrete with fiber-reinforced concrete (FRC) to upgrade the seismic resistance capacity of the containment is attempted and thoroughly researched. In this study, the influence of various fiber types such as rigid fiber and mixed fiber is regarded to constitute fiber-reinforced PCCVs. The physical properties of traditional and fiber-reinforced PCCVs under earthquake ground motions are scientifically compared and identified by using traditional and proposed evaluation indices. The results indicate that both the traditional evaluation index (i.e. top displacement, stress, strain) and the proposed damage index are greatly reduced by the practice of fiber strengthening under earthquake ground motions.

Unsteady aerodynamic force on a transverse inclined slender prism using forced vibration

  • Zengshun Chen;Jie Bai;Yemeng Xu;Sijia Li;Jianmin Hua;Cruz Y. Li;Xuanyi Xue
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.331-346
    • /
    • 2023
  • This work investigates the effects of transverse inclination on an aeroelastic prism through forced-vibration wind tunnel experiments. The aerodynamic characteristics are tri-parametrically evaluated under different wind speeds, inclination angles, and oscillation amplitudes. Results show that transverse inclination fundamentally changes the wake phenomenology by impinging the fix-end horseshoe vortex and breaking the separation symmetry. The aftermath is a bi-polar, one-and-for-all change in the aerodynamics near the prism base. The suppression of the horseshoe vortex unleashes the Kármán vortex, which significantly increases the unsteady crosswind force. After the initial morphology switch, the aerodynamics become independent of inclination angle and oscillation amplitude and depend solely on wind speed. The structure's upper portion does not feel the effect, so this phenomenon is called Base Intensification. The phenomenon only projects notable impacts on the low-speed and VIV regime and is indifferent in the high-speed. In practice, Base Intensification will disrupt the pedestrian-level wind environment from the unleashed Bérnard-Kármán vortex shedding. Moreover, it increases the aerodynamic load at a structure base by as much as 4.3 times. Since fix-end stiffness prevents elastic dissipation, the load translates to massive stress, making detection trickier and failures, if they are to occur, extreme, and without any warnings.

Vascular Cell Responses against Oxidative Stress and its Application

  • Ryoo, Sung-Woo;Lee, Sang-Ki;Kim, Cuk-Seong;Jeon, Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • The history of studies in biology regarding reactive oxygen species (ROS) is approximately 40 years. During the initial 30 years, it appeared that these studies were mainly focused on the toxicity of ROS. However, recent studies have identified another action regarding oxidative signaling, other than toxicity of ROS. Basically, it is suggested that ROS are reactive, and degenerate to biomolecules such as DNA and proteins, leading to deterioration of cellular functions as an oxidative stress. On the other hand, recent studies have shown that ROS act as oxidative signaling in cells, resulting in various gene expressions. Recently ROS emerged as critical signaling molecules in cardiovascular research. Several studies over the past decade have shown that physiological effects of vasoactive factors are mediated by these reactive species and, conversely, that altered redox mechanisms are implicated in the occurrence of metabolic and cardiovascular diseases ROS is a collective term often used by scientist to include not only the oxygen radicals($O2^{-{\cdot}},\;{^{\cdot}}OH$), but also some non-radical derivatives of oxygen. These include hydrogen peroxide, hypochlorous acid (HOCl) and ozone (O3). The superoxide anion ($O2^{-{\cdot}}$) is formed by the univalent reduction of triplet-state molecular oxygen ($^3O_2$). Superoxide dismutase (SOD)s convert superoxide enzymically into hydrogen peroxide. In biological tissues superoxide can also be converted nonenzymically into the nonradical species hydrogen peroxide and singlet oxygen ($^1O_2$). In the presence of reduced transition metals (e.g., ferrous or cuprous ions), hydrogen peroxide can be converted into the highly reactive hydroxyl radical (${^{\cdot}}OH$). Alternatively, hydrogen peroxide may be converted into water by the enzymes catalase or glutathione peroxidase. In the glutathione peroxidase reaction glutathione is oxidized to glutathione disulfide, which can be converted back to glutathione by glutathione reductase in an NADPH-consuming process.

  • PDF

Initial Excess Pore Pressure Induced by Cone Penetration in Normally Consolidated Clays (정규압밀점토에서의 피에조 콘 관입에 의한 과잉간극수압에 대한 연구)

  • 임형덕;이우진;김대규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.151-161
    • /
    • 2003
  • In this study, an interpretation method is proposed to evaluate the stress conditions, including individual excess pore pressure components ($\Delta{u}_{oct}$/ and $\Delta{u}_{shear}$), of normally consolidated clay elements adjacent to the cone face. It is assumed that the stress path of triaxial compression is representative f3r that of the soil element and the soil is elastic-perfectly plastic material. The proposed method is applied to the results of miniature piezocone tests conducted at Louisiana State University calibration chamber system. Based on the results of interpretation, it was found that the ratio of $\Delta{u}_{oct}$/ $\Delta{u}$and $\Delta{u}_{shear}$/$\Delta{u}$ estimated by the proposed method is affected only by the pore pressure parameter. The proposed method gives consistent and reliable values of $\Delta{u}_{oct}$/ $\Delta{u}$and $\Delta{u}_{shear}$/$\Delta{u}$ compared with early works, whereas those obtained by other solutions are significantly dependent on the accuracy in estimating soil properties such as undrained shear strength and rigidity index.

Estimation of Coefficient of Consolidation Using Piezocone Dissipation Test in Normally Consolidated Clays (정규압밀점토에서의 피에조 콘 소산시험을 이용한 수평압밀계수의 산정)

  • 임형덕;이우진;김대규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.145-154
    • /
    • 2003
  • In this study, the variation in excess pore pressure during dissipation is estimated by using successive cavity expansion theory and finite difference technique based on axisymmetric uncoupled linear consolidation theory with separate consideration of magnitude and initial distribution $\Delta{u}_{oct}$induced by changes of octahedral normal stress, and $\Delta{u}_{shear}$ induced by changes of octahedral shear stress. The coefficient of consolidation is also estimated by trial and error procedure until the predicted dissipation curve matches the measured curve at a typical degree of dissipation. The proposed method is applied to the results of miniature piezocone tests at Louisiana State University calibration chamber system. Based on the results of interpretation and the comparison with experimental measurements and those from other solutions, the prediction dissipation curves show a good match with those measured during dissipation tests and the values of coefficient of consolidation estimated by proposed method are more close to the range of laboratory measurements than those of other theories.