DOI QR코드

DOI QR Code

Passive p-y curves for rigid basement walls supporting granular soils

  • Imad, Elchiti (Department of Civil and Environmental Engineering, American University of Beirut) ;
  • George, Saad (Department of Civil and Environmental Engineering, American University of Beirut) ;
  • Shadi S., Najjar (Department of Civil and Environmental Engineering, American University of Beirut)
  • Received : 2020.07.22
  • Accepted : 2023.01.18
  • Published : 2023.02.10

Abstract

For structures with underground basement walls, the soil-structure-interaction between the side soil and the walls affects the response of the system. There is interest in quantifying the relationship between the lateral earth pressure and the wall displacement using p-y curves. To date, passive p-y curves in available limited studies were assumed elastic-perfectly plastic. In reality, the relationship between earth pressure and wall displacement is complex. This paper focuses on studying the development of passive p-y curves behind rigid walls supporting granular soils. The study aims at identifying the different components of the passive p-y relationship and proposing a rigorous non-linear p-y model in place of simplified elastic-plastic models. The results of the study show that (1) the p-y relationship that models the stress-displacement response behind a rigid basement wall is highly non-linear, (2) passive p-y curves are affected by the height of the wall, relative density, and depth below the ground surface, and (3) passive p-y curves can be expressed using a truncated hyperbolic model that is defined by a limit state passive pressure that is determined using available logarithmic spiral methods and an initial slope that is expressed using a depth-dependent soil stiffness model.

Keywords

Acknowledgement

The authors would like to acknowledge the support of the University Research Board (URB) at the American University of Beirut for funding this work.

References

  1. Allotey, N. and El Naggar, M.H. (2007), "Generalized dynamic Winkler model for nonlinear soil-structure interaction analysis", Can. Geotech. J., 45(4), 560-573. https://doi.org/10.1139/T07-106. 
  2. American Petroleum Institute (1993), "API Recommended Practice for Planning, Designing, and Constructing Fixed Offshore". 
  3. Bakr, S. and Ahmad, S.M. (2018), "A finite element performance-based approach to correlate movement of a rigid retaining wall with seismic earth pressure", Soil Dyn. Earthq. Eng., 114, 460-479. https://doi.org/10.1016/j.soildyn.2018.07.025. 
  4. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, B.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analysis", J. Geotech. Geoenviron., 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750). 
  5. Briaud, J.L. and Kim, N.K. (1998), "Beam-column method for tieback walls", J. Geotech. Geoenviron., 124(1), 67-79. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(67). 
  6. Chen, W.F. (1975), "Limit analysis and soil plasticity", Elsevier Science Publishers, B.V., Amsterdam, the Netherlands. 
  7. Clough, G.W. and Duncan, J.M. (1971), "Finite element analyses of retaining wall behavior", J. Soil Mech. Found. Div., 97(12), 1657-1673.  https://doi.org/10.1061/JSFEAQ.0001713
  8. Conte, E., Troncone, A. and Vena, M. (2017). "A method for the design of embedded cantilever retaining walls under static and seismic loading", Geotechnique, 67(12), 1081-1089. https://doi.org/10.1680/jgeot.16.P.201. 
  9. Coulomb, C.A. (1776), "An attempt to apply the rules of maxima and minima to several problems of stability related to architecture", Memoires de l'Academie Royale des Sciences, 7, 343-382. 
  10. Dilmac, H., Ulutas, H., Tekeli, H. and Demir, F. (2018). "The investigation of seismic performance of existing RC buildings with and without infill walls", Comput. Concrete, 22(5), 439-447. https://doi.org/10.12989/cac.2018.22.5.439. 
  11. Duncan, J.M. and Chang, C.Y. (1970), "Non-linear analysis of stress and strain in soils", J. Soil Mech. Found. Div., 96(5), 1629-1653.  https://doi.org/10.1061/JSFEAQ.0001458
  12. Duncan, J.M. and Mokwa, R.L. (2001), "Passive earth pressures: theories and tests", J. Geotech. Geoenviron., 127(3), 248-257. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(248). 
  13. El Ganainy, H. and El Naggar, M.H. (2009), "Seismic performance of three-dimensional frame structures with underground stories", Soil Dyn. Earthq. Eng., 29(9), 1249-1261. https://doi.org/10.1016/j.soildyn.2009.02.003. 
  14. Elchiti, I., Saad, G., Najjar, SS. and Nasreddine, N. (2017), "Investigation of active soil pressures on retaining walls using finite element analyses", Proceedings of the GeoFrontiers Conference, March 12-15, Orlando, Florida, USA. https://doi.org/10.1061/9780784480458.016. 
  15. Gazetas, G., Garini, E. and Zafeirakos, A. (2016), "Seismic analysis of tall anchored sheet-pile walls", Soil Dyn. Earthq. Eng., 91, 209-221. https://doi.org/10.1016/j.soildyn.2016.09.031. 
  16. Hanna, A. and Diab, R. (2017), "Passive earth pressure of normally and over-consolidated cohesionless soil in terms of critical-state soil mechanics parameters", Int. J. Geomech., 17(1), 04016028. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000683. 
  17. Hanna, A., Rahman, F. and Ayadat, T. (2011), "Passive earth pressure on embedded vertical plate anchors in sand", Acta Geotechnica, 6(1), 21-29. https://doi.org/10.1007/s11440-010-0109-0. 
  18. Kumar, J. (2001), "Seismic passive earth pressure coefficients for sands", Can. Geotech. J., 38(4), 876-881. https://doi.org/10.1139/t01-004. 
  19. Liu, S., Xia, Y. and Liang, L. (2018), "A modified logarithmic spiral method for determining passive earth pressure", J. Rock Mech. Geotech. Eng., 10(6), 1171-1182. https://doi.org/10.1016/j.jrmge.2018.03.011. 
  20. Maleki, S. and Mahjoubi, S. (2010), "A new approach for estimating the seismic soil pressure on retaining walls", Scientia Iranica, 17(4), 273-284. 
  21. Matlock, H. (1970), "Correlations for design of laterally loaded piles in soft clay", Proceedings of the 2nd Annual Offshore Technology Conference, OTC 1204, Houston, Texas. https://doi.org/10.4043/1204-MS. 
  22. Mikola, R.G., M.R., Candia, G. and Sitar, N. (2016). "Seismic earth pressures on retaining structures and basement walls in cohesionless soils", J. Geotech. Geoenviron., 142(10), 04016047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001507. 
  23. Ramberg, W. and Osgood, W.R. (1943), "Description of stress-strain curves by three parameters", Tech. Note 902, National Advisory Comm. Aeronaut., Washington, DC. 
  24. Rankine, W.J.M. (1857), "On the stability of loose earth", Philosophical Transaction of the Royal Society, London, UK.
  25. Rao, K.S.S. and Choudhury, D. (2005), "Seismic passive earth pressures in soils", J. Geotech. Geoenviron., 131(1), 131-135. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(131). 
  26. Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Proceedings of the 6th Offshore Technology Conference, OTC 2080, Houston, Texas. 
  27. Richard, R.J., Huang, C. and Fishman, K.L. (1999). "Seismic earth pressure on retaining structures", J. Geotech. Geoenviron., 125(9), 771-778. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(771). 
  28. Saad, G., Najjar, S.S. and Saddik, F. (2016), "Seismic performance of reinforced concrete shear wall buildings with underground stories", Earthq. Struct., 10(4), 965-988. https://doi.org/10.12989/eas.2016.10.4.965. 
  29. Skeini, H. (2015), "Numerical modeling of triaxial tests on clays with sand-column inclusions", Master Thesis, American University of Beirut. 
  30. Soubra, A.H. and Regenass, P. (2000), "Three-dimensional passive earth pressures by kinematical approach", J. Geotech. Geoenviron., 126(11), 969-978. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(969). 
  31. Tejchman, J., Bauer, E. and Tantono, S.F. (2007), "Influence of initial density of cohesionless soil on evolution of passive earth pressure", Acta Geotechnica, 2(1), 53. https://doi.org/10.1007/s11440-007-0022-3. 
  32. Terzaghi, K. (1943), "Theoretical soil mechanics", John Wiley and Sons 1943, New York, USA. 
  33. Wilson, D.W., Boulanger, R.W. and Kutter, B.L. (2000), "Observed seismic lateral resistance of liquefying sand", J. Geotech. Geoenviron., 126(10), 898-906. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:10(898).