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Abstract

The history of studies in biology regarding reactive oxygen species (ROS) is approximately 40 years. During the initial 30
years, it appeared that these studies were mainly focused on the toxicity of ROS. However, recent studies have identified
another action regarding oxidative signaling, other than toxicity of ROS. Basically, it is suggested that ROS are reactive, and
degenerate to biomolecules such as DNA and proteins, leading to deterioration of celiular functions as an oxidative stress.
On the other hand, recent studies have shown that ROS act as oxidative signaling in cells, resulting in various gene
expressions. Recently ROS emerged as critical signaling molecules in cardiovascular research. Several studies over the
past decade have shown that physiological effects of vasoactive factors are mediated by these reactive species and,
conversely, that altered redox mechanisms are implicated in the occurrence of metabolic and cardiovascular diseases™.
ROS is a coflective term often used by scientist to include not only the oxygen radicals (02, *OH), but also some non-radical
derivatives of oxygen. These include hydrogen peroxide, hypochlorous acid (HOC!) and ozone (O3). The superoxide anion
(02™) is formed by the univalent reduction of triplet-state molecular oxygen (°O,). Superoxide dismutase (SOD)s convert
superoxide enzymicallyinto hydrogen peroxide.* ® In biological tissues superoxide can also be converted nonenzymically into
the nonradical species hydrogen peroxide and singlet oxygen ('0,).° In the presence of reduced transition metals (e.g.,
ferrous or cuprous ions), hydrogen peroxide can be converted into the highly reactive hydroxyl radical (‘OH).7 Alternatively,
hydrogen peroxide may be converted into water by the enzymes catalase or glutathione peroxidase. In the glutathione
peroxidase reaction glutathione is oxidized to glutathione disulfide, which can be converted back to glutathione by glutathione
reductase in an NADPH-consuming process.

ROS as intracellular messengers

There are various examples of growth factors,
cytokines, or other ligands that trigger ROS production
in nonphagocytic cells through their corresponding
membrane receptors. Such ROS production can mediate
a positive feedback effect on signal transduction from
these receptors since intracellular signaling is often
enhanced by ROS or by a pro-oxidative shift of the
intracellular thiol/disulfide redox state. For example, the
role of ROS has been demonstrated for nerve growth
factor (NGF) signaling in neuronal cells®, for epidermal
growth factor (EGF) signaling in human epidermoid
carcinoma cells®, and for PDGF.'" ! Stimulation by any
of these growth factors results in a transient increase

in intracellular ROS through the signaling protein Rac1.
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Elimination of hydrogen peroxide by catalase was
shown to inhibit EGF- and NGF-induced tyrosine
phosphorylation of various cellular proteins, including
phosphorylation of the growth factor receptor itself.

The most important insulin-responsive tissues are
liver, skeletal muscle, and adipose tissue. In these tissues
insulin controls several physiologically important
functions, including the rate of glucose uptake,
intraceltular glucose metabolism, lipid metabolism, and
the synthesis of proteins at the transcriptional and
translational level.”” Lower and physiologically relevant
concentrations (<0.1 mM) of hydrogen peroxide are not
sufficient to trigger the autophosphorylation of the
insulin receptor in the absence of insulin, but do enhance
the response to 100 nM insulin®®, indicating that the

redox signal has a coregulatory function in insulin
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receptor activation under physiologically relevant

conditions.

Target moleeules of ROS

MAPK signaling cascades are regulated by
phosphorylation and dephosphorylation on serine and/or
threonine residues and respond to activation of receptor
tyrosine kinases, protein tyrosine kinases, receptors of
cytokines and growth factors, and heterotrimeric G
protein-coupled receptors. Numerous studies with
various experimental systems show that in particular the
MAPK species JNK and p38 are strongly activated by
ROS or by a mild oxidative shift of the intracellular
thiol/disulfide redox state.'*'® The extracellular signal-
regulated kinase 1 (ERK-1) and ERK-2 were found to be
activated in vascular smooth muscle cells by superoxide
but not by hydrogen peroxide.'” The apoptosis
signaling-regulating kinase 1 (ASK1) plays a role in the
activation of MKK3/6, MKK4/MKK?7, and the MAPK
species p38 and JNK.?® This leads ultimately to the
phosphorylation of ATF2, c-Jun, and p53.2"%

Screening for ASK1-associated proteins has led to the
identification of thioredoxin (Trx) as the redox-sensitive
target molecule.* Under normal conditions, Trx binds to
the NH,-terminal domain of ASKI and inhibits its
kinase activity. Deletion of the Trx-binding NH,-
terminal residues of ASKI renders it constitutively
active and no longer responsive to the inhibitory effect
of Trx. ROS induce the dimerization of Trx and its
dissociation from ASK1, followed by multimerization of
ASKI1 and activation of its kinase activity.”*® Signaling
factors such as redox factor-1 (Ref-1) and transcription
factors such as the AP-1 complex both contain redox-
sensitive cysteine motifs that regulate activity in
response to oxidative stress”.

Changes in the cytosolic Ca®* level play a role in the
modulation of several intracellular signal pathways,
including PKC- tz and calmodulin-dependent signal
pathways.”® The cytosolic Ca® level can be increased by
ROS in various cell types through the mobilization of
intracellular Ca®* stores and/or through the influx of
extracellular Ca>".** The ROS-mediated increase in
the cytosolic Ca®* concentration contributes to the
oxidative stress-mediated activation of PKC-tr*> and to
the transcriptional induction of the AP-1 proteins c-Fos

and c-Jun >

The adherence of leukocytes to endothelial cells is
also induced by ROS.>> % This effect is abolished by
catalase but not by superoxide dismutase, suggesting that
hydrogen peroxide and not superoxide is the effective
agent.” Moreover, the oxidant-induced adherence of
monocyte is inhibited by overexpression of redox factor-

1 which may have an antioxidant property, suggesting

that the induction of adherence may be mediated by .
oxidative stress within the cell.‘37 Adhesion of
neutrophils to endothelial cells involves the vascular cell
adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule-1 (ICAM-1), CD11b/CD18, and L-selectin.”>
7 In addition, ROS treatment of endothelial cells
induces the phosphorylation of the focal adhesion kinase
ppl25™¥

implicated in the oxidant-mediated adhesion process.3

, a cytosolic tyrosine kinase that has been
3

Enzymatic production of ROS

Multiple enzymatic systems produce O,” and its
derivatives in the vasculature, including NAD(P)H
oxidases, Xanthine oxidase (XO), nitric oxide synthases
(NOS), and myeloperoxidase (MPO). The relative
importance of each of these proteins appears to vary
with the physiological state of the vasculature.

NAD(P)H oxidases consist of multiple subunits: the
electron transfer moieties (gp91phox, nox! or nox4),
p22phox, and regulatory subunits (p47phox, p67phox,
and racl). The expression pattern of these subunits
varies among vascular cells (Table 1)*. The important
role of vascular NAD(P)H oxidase will discuss in
Section 4. In certain circumstances, NOS can generate
0O," in addition to NO. NOS utilizes L-arginine as a
substrate to synthesize NO" in a tetrahydrobiopterin
(H;B)-dependent manner. If the concentration of L-
arginine or H4B is low, or if H,B is oxidized, NOS
becomes uncoupled and generates significant amounts of
0,~* This occurs in hypertension, where activation of
NAD(P)H oxidases leads to oxidation of HiB and
production of large amounts of O, from endothelial
NOS.*'  Xanthine oxidoreductase is ubiquitous and
appears in two interconvertible, yet functionally distinct,
forms: xanthine dehydrogenase and X0.% X0
metabolizes hypoxanthine, xanthine, and NADH to form
05" and H,0,. XO-generated ROS have been implicated
in various clinicopathologic entities, including
ischemia/reperfusion injury, hypercholesterolemia and

endothelial dysfunction in chronic heart failure. 2 4



Recently, the role of MPO in vascular pathology has
been highlighted. MPO is abundant in phagocytes and
catalyzes H,O, to produce HOCI and other oxidizing
species.™ It also utilizes NO' to generate reactive
nitrogen species, thereby reducing NO' bioactivity and

increasing oxidative stress.*> *¢

Vascular NADPH oxidase
NAD(P)H

overproduction of reactive oxygen species contributes to

Vascular oxidase—dependent
pathogenesis of cardiovascular diseases.””*"  Among
biologically relevant and abundant reactive oxygen
species, superoxide (O,") and hydrogen peroxide (H,0,)
appear most important in redox signaling. Whereas O~
primarily modulates vascular function by rapidly
inactivating NO'? H,0, impacts on vascular function
via complex mechanisms. Ambient production of H,O,
at low levels, likely maintained by pre-assembled
NAD(P)H oxidases,” is necessary for endothelial cell

growth and proliferation.® >

Under pathological
conditions, however, agonists-provoked activation of
vascular NAD(P)H oxidases produces H,O, in large
quantities, which in turn amplifies its own production,
resulting in compensatory or detrimental consequences.
For instance, H,O, is either compensatorily responsible
for endothelium-dependent  vasodilatation in
hypertension whére NO' is substantially reduced,” or
over the long term detrimentally involved in vascular
smooth muscle cell proliferation and hypertrophy.>>’

More recently it has become clear that the vascular
wall also produces superoxide, mostly via enzymes
similar to the neutrophil oxidase. Furthermore, it was
also discovered that the catalytic subunit gp91phox is
only one member of a new family of homologous
proteins termed nox (for NADPH oxidase) 31 and that
most cells express multiple nox proteins.”

In expression of vascular NAD(P)H oxidases in cells
and tissues, evidence that vascular cells can express
gp91phox (aka, nox2), as well as nox1, nox4, and noxS5,
will be presented. It is thought that nox family members
transfer electrons from a reduced substrate to molecular
oxygen in a way similar to gp9lphox. Very recent
repotts suggest that nox! can interact with the
phagocytic subunits p22phox, p47phox, and p67phox,”
as well as two novel homologues of p47phox and
p67phox.>® However, it is not yet known whether these

latter proteins are expressed in vascular cells.
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Table 1. Expression(+) of phagocytic oxidase(phox)
components in vascular cells

VSMCs Endothelial Adventitial
Cells Cells

mRNA Protein mRNA Protein  mRNA  Protein

Gp91phox - - + + ND* +
P22phox + + + + ND* +
P47phox + + + + ND* +
P67phox - - + + + +

*ND indicates not determined.

Monitoring ROS formation in vive
Traditionally, attention has focused on the
development of in vivo biomarkers of oxidant stress.
Essentially, the approach has been indirect and
configured on the identification of chemically stable,
free radical-catalyzed products of lipid peroxidation
(such as isoprostanes), modified proteins (such as
nitrated fibrinogen), and indices of free radical-
catalyzed modification of DNA (such as 8-oxo-
deoxyguanosine).zs’ 6.8 Much of the earlier literature
has been confounded by limitations reflective of ex vivo
methodology or intrinsic to the specific approach. These
include the nonspecific route to formation ofthe anylate,
the imprecision with which the anylate is quantified, and
the possibility that ROS generation is related nonlinearly
to alterations in the anylate. Finally, ROS generation can
result in modification of lipids, protein, and DNA 5767
Approaches to quantification of ROS generation in vivo
have tended to focus on a single anylate within one of
these broad categories, and an integrated approach, using
modern spectroscopic methods, has yet to be applied.
Earlier studies have focused most commonly on
products of lipid peroxidation. These have included the
measurement of thiobarbituric acid-reacting substances,
including

malonyldialdehyde. However,  these

compounds can be formed  nonspecifically
(malonyldialdehyde is a byproduct of cyclooxygenase
turnover), and ex vivo platelet activation may seriously
confound measurements.”

An example of the more recentlyl discovered anylates
formed in vivo are the isoprostanes (iPs), chemically
stable, free radical-catalyzed products of arachidonic
acid.®’ These compounds are free radical-catalyzed
isomers of traditional enzymatic products of arachidonic
acid metabolism. They are formed initially in situ in the

phospholipid domain of cell membranes subject to ROS
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attack and are then cleaved by phospholipases, released
extracellularly, circulated, and excreted in urine.¥ ™ A
range of mass spectroscopic assays have emerged on the
basis of authentic standards for individual F, iPs.”""
Current immunoassays directed against iPFp-III {also

known as 8-iso PGF,;) are more commonly used.

Oxidative stress and cardiovascular
disease

Atherosclerosis is a  multifactorial ~ disease
characterized by hardening and thickening of the arterial
wall. The vascular areas affected by this disease contain
mononuclear cells, proliferating smooth muscle cells,
and extracellular matrix components. Atherosclerosis is
commonly viewed as a chronic inflammatory disease
and is associated with certain risk factors such as
hypetlipidemia, diabetes, and hypertension. Excessive
ROS production has been implicated in the pathogenesis

7680 Excessive

of atherosclerosis and hypertension.
ROS production is associated with massive macrophage
apoptosis and contributes thereby to the formation of the
atherosclerotic lesions.®" ¥ The process may be further
enhanced by cytokines and other factors such as TNF,
interleukin-la, angiotensin II, and interferon-¥, which
induce superoxide production by the membrane-bound
NADPH oxidase in endothelial cells.****

Ischemia and reperfusion can lead to tissue injury and
are serious complications in organ transplantation,
myocardial infarction, and stroke.’**® Massive ROS
production was identified as an important causative
factor.*®*" Xanthine dehydrogenase, which normally
utilizes NAD" as electron acceptor, is converted under
the conditions of ischemia/reperfusion into xanthine
oxidase which uses oxygen as substrate. More recently,
a Racl-regulated NAD(P)H oxidase distinct from the
phagocytic NAD(P)H oxidase was shown to be
critically involved in ROS production in a mouse model
of hepatic ischemia/reperfusion injury.” Also, treatment
with a synthetic SOD mimetic was shown to ameliorate
tissue damage in a rat model of ischemia/reperfusion
injury.”

In hypertension, the role of the angiotensin-1 (AT1)
receptor has been the subject of intense investigation in
both in vitro and animal models. Ang II modulates
hypertension through its effect on the renin-angiotensin
system, and the stimulation of ATI receptors in the
vascular wall leads to activation of NADH/NAD(P)H

oxidase in vascular cells. The resultant oxidative stress is
considered a unifying mechanism for hypertension and

atherosclerosis. ™

Application of cell permeable ROS
inhibitors

Oxidative stress, involving elevated levels of ROS
such as superoxide and peroxynitrite, has been
implicated in the pathogenesis of several, if not most,
forms of cardiovascular disease. Recent studies using
viral-mediated gene transfer of genes that redress
oxidative stress in animal models of cardiovascular
disease have suggested that targeting sources of
superoxide would provide a novel therapeutic strategy in
cardiovascular disease. However, in vivo, gene therapy
approaches relying on adenoviral vectors are associated
with significant difficulties relating to a lack of target
specificity and toxicity which have contributed to poor
performance in several clinical trials.

Remarkably, the recent identification of a particular
group of proteins with enhanced ability to cross the
plasma membrane in a receptor-independent fashion has
led to the discovery of a class of protein domains with
cell membrane penetrating properties. The fusion of
these protein transduction domain peptide sequences
with heterologous proteins is sufficient to cause their
rapid transduction into a variety of different cells in a
rapid, concentration-dependent manner™®.

It is necessary, therefore, to establish a novel
technique to introduce membrane proteins onto live cells,
in particular, directly from outside of the cell. In this
regard, we focused on using the protein transduction
domain (PTD) of HIV-TAT protein.”” The Tat PTD, a
short basic region composed of residues 47-57 of HIV
Tat protein, delivers fused peptides into live cells in
vitro and in vivo (reviewed in®). Identification of a
vascular form of the NAD(P)H oxidase as the major
source of superoxide has resulted in a search for
effective inhibitors. Recently, it was reported a chimeric
peptide inhibitor (gp91ds-tat) that interferes with the
assembly of vascular NAD(P)H oxidase components,
and showed that this chimera abolished Ang II-induced
aortic O, generation in vitro and in vivo”?. However,
this novel strategy of “molecular transplantation” can be
applied to modulate cell functions for use in  Various

biological fields.



Closing Remark

The most exciting aspect of protein transduction
technology is the previously unheard-of ability to
address specific inhibition of oxidative stress and the
pathophysiology of cardiovascular diseases. These kinds
effort to reduce oxidative stress, we look forward to
being able to restore cardiovascular disorder or interfere
with various oxidative pathways using this technology

in the coming years.
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