• Title/Summary/Keyword: initial slope

Search Result 349, Processing Time 0.028 seconds

Development of DC-DC Converter for Ancillary Power Supply in Hybrid Electric Vehicle (하이브리드 자동차 보조전원 공급용 DC-DC 컨버터 개발)

  • Kim, Jong-Cheol;Choi, Deok-Kwan;Park, Hae-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.261-265
    • /
    • 2005
  • This paper describes the DC-DC Converter for Ancillary Power Supply in Hybrid Electric Vehicle. DC-DC Converter is used for charging 12V auxiliary battery supplying electric power to head ramp, audio, ECU etc in automobiles. used DC-DC Converter Topology is PS-ZVS FB(Phase Shifted Zero Voltage Switching Full-Bridge) to reduce switching loss and EMI noise induced by high frequency operating condition. And For easy compensation and stable system response characteristic, current mode control method including slope compensation is employed. Constant current / constant voltage charging control method guarantee stable electric charging of auxiliary battery. Simulation toll PSIM6.0 is used for initial circuit parameter settings and H/W debuging. Thermal problems of Switching components in DC-DC Converter is improved by using Thermo Tracer.

  • PDF

Enthalpy Changes of Adsorption of Tetrafluorocarbon (CF4) and Hexafluoroethane (C2F6) on Activated Carbon

  • Shin, Jiyoung;Suh, Sung-Sup;Choi, Moon Kyu
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Under low pressures of $CF_4$ and $C_2F_6$ up to 20.7 kPa, the equilibrium adsorbed quantity on activated carbon was experimentally examined using the volumetric method at various temperatures between 293.15 K and 333.15 K. To give the best fit to the experimental data curve, the two step model (i.e., Langmuir model for the first layer adsorption and then Freundlich physisorption) is suggested. The method of initial slope yielded the enthalpy of adsorption for the first step while we could apply the Clausius-Clapeyron equation to find the heat of adsorption of the second step. They are 25.9 kJ/mol and 11.8 kJ/mol, respectively, with $CF_4$, and 38.7 and 38.2 kJ/mol with $C_2F_6$.

Effect of onion and beet on plasma and liver lipids, platelet aggregation, and erythrocyte Na efflux in simvastatin treated hypercholesterolmic rats

  • Kim, Jung-Lye;Chae, In-Sook;Kang, Young-Hee;Kang, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • This study was purposed to investigate the effect of onion or beet on plasma and liver lipids, erythrocyte Na efflux channels and platelet aggregation in simvastatin (SIM) treated hypercholesterolemic rats. Forty Sprague Dawley rats were divided into four groups and fed 0.5% cholesterol based diets containing 2 mg/kg BW simvastatin or simvastatin with 5% onion or beet powder. Plasma total cholesterol was significantly increased in SIM group compared with the control (p<0.01), and the elevated plasma total cholesterol of SIM group was significantly decreased in SIM-onion and SIM-beet groups (p<0.05). HDL-cholesterol in SIM-beet group was significantly increased compared with other groups (p<0.05). Platelet aggregation in both the maximum and initial slope was significantly decreased in SIM group compared with SIM-onion group (p<0.05). Na-K ATPase was significantly decreased in SIM group compared with the control, SIM-onion and SIM-beet groups (p<0.05). Na passive leak was significantly increased in all groups treated with SIM compared with the control (p<0.05). The total Na efflux was decreased in SIM group and increased in SIM-onion group and the difference between these two groups was significant (p<0.05). There was no difference in intracellular Na among groups. In present study, simvastatin, a HMG CoA reductase inhibitor at dose of 2mg/kg BW/day rather increased plasma total cholesterol in rats, inferring that the action mechanism of simvastatin on cholesterol metabolism differ between rat and human. Onion and beet play favorable roles in cardiovascular system by restoring the reduced Na efflux through Na-K ATPase and Na-K cotransport in SIM treated rats.

Incipient motion criteria of uniform gravel bed under falling spheres in open channel flow

  • Khe, Sok An;Park, Sang Deog;Jeon, Woo Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.149-149
    • /
    • 2018
  • Prediction on initial motion of sediment is crucial to evaluate sediment transport and channel stability. The condition of incipient movement of sediment is characterized by bed shear stress, which is generated from force of moving water against the bed of the channel, and by critical shear stress, which depends on force resisting motion of sediment due to the submerged weight of the grains. When the bed shear stress exceeds the critical shear stress, sediment particles begin rolling and sliding at isolated and random locations. In Mountain River, debris flow frequently occurs due to heavy rainfall and can lead some natural stones from mountain slope into the bed river. This phenomenon could add additional forces to sediment transport system in the bed of river and also affect or change direction and magnitude of sediment movement. In this paper, evaluations on incipient motion of uniform coarse gravel under falling spheres impacts using small scale flume channel were conducted. The drag force of falling spheres due to water flow and length movement of falling spheres were investigated. The experiments were carried out in flume channel made by glass wall and steel floor with 12 m long, 0.6 m wide, and 0.6 m deep. The bed slopes were selected with the range from 0.7% to 1.5%. The thickness of granular layer was at least 3 times of diameter of granular particle to meet grain placement condition. The sphere diameters were chosen to be 4cm, 6 cm, 8 cm, 10 cm. The spheres were fallen in to the bed channel for critical condition and under critical condition of motion particle. Based on the experimental results, the Shields curve of particles Reynold number and dimensionless critical shear stress were plotted. The relationship between with drag force and the length movement of spheres were plotted. The pathways of the bed material Under the impact of spheres falling were analyzed.

  • PDF

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam (바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델)

  • Lee, Kwang-Il;Mun, Ju-Hyun;Yang, Keun-Hyeok;Ji, Gu-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.

Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing (축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석)

  • Cho, Dae-Seung;Jang, Heung-Kyu;Jin, Byung-Mu;Kim, Kookhyun;Kim, Sung-Chan;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Gordan, Behrouz;Khorami, Majid;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.629-640
    • /
    • 2019
  • The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.

Adolescent Self-esteem, Career Identity, School Learning Activity and Life Satisfaction Change: From Middle School to High School (중학교에서 고3까지의 자아존중감, 진로정체감, 학습활동과 삶의 만족도 관계연구: 4년간의 변화를 중심으로)

  • Kim, Sunah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.507-514
    • /
    • 2018
  • This study utilized latent growth curve modeling to investigate the trajectories of adolescent life satisfaction changes in middle and high school students. The effects of self-esteem, career identity, school learning activity, gender, and household earnings on life satisfaction changes were examined. Data was obtained from the Korea Child Youth Panel Survey (KYCPS), a longitudinal study following students for 7 years. Year 3-6 data was utilized. Results found that the life satisfaction trajectory resulted as a quadratic model in which individual differences were significant. Second, school learning activity used as a time variant variable had a positive significant effect on life satisfaction each year. Third, gender and self-esteem as time invariant variables had significant effects on initial levels while self-esteem had effects on the slope and quadratic change. Further implications and research issues are discussed.

A New Adaptive Kernel Estimation Method for Correntropy Equalizers (코렌트로피 이퀄라이져를 위한 새로운 커널 사이즈 적응 추정 방법)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.627-632
    • /
    • 2021
  • ITL (information-theoretic learning) has been applied successfully to adaptive signal processing and machine learning applications, but there are difficulties in deciding the kernel size, which has a great impact on the system performance. The correntropy algorithm, one of the ITL methods, has superior properties of impulsive-noise robustness and channel-distortion compensation. On the other hand, it is also sensitive to the kernel sizes that can lead to system instability. In this paper, considering the sensitivity of the kernel size cubed in the denominator of the cost function slope, a new adaptive kernel estimation method using the rate of change in error power in respect to the kernel size variation is proposed for the correntropy algorithm. In a distortion-compensation experiment for impulsive-noise and multipath-distorted channel, the performance of the proposed kernel-adjusted correntropy algorithm was examined. The proposed method shows a two times faster convergence speed than the conventional algorithm with a fixed kernel size. In addition, the proposed algorithm converged appropriately for kernel sizes ranging from 2.0 to 6.0. Hence, the proposed method has a wide acceptable margin of initial kernel sizes.

Investigation on the Variation of Ocean Waves passing through Shallow Waters (낮은 수심을 통과하는 해양파의 변화에 대한 연구)

  • Seok, Woochan;Won, Younsang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.161-167
    • /
    • 2022
  • Ocean waves passing through the underwater bar at a shallow depth experience a shoaling effect caused by decreasing water depth, a nonlinear interaction therein owing to steepening wave slope, and a wave dispersion effect as the water depth increases again. Because this problem includes many complicated phenomena, it is used as a good example of validating a theoretical development or a CFD method for ocean wave applications. Validation is performed mainly for regular waves by comparing the wave elevation patterns in the time domain with the experimental results. In this study, the spectral evolution of wave spectrum is investigated in the frequency domain when a CFD method such as OpenFOAM is applied for this problem. In particular, the effects of initial phase conditions as well as the nonlinear interaction among harmonic waves are studied.