DOI QR코드

DOI QR Code

Enthalpy Changes of Adsorption of Tetrafluorocarbon (CF4) and Hexafluoroethane (C2F6) on Activated Carbon

  • Shin, Jiyoung (Department of Chemical Engineering, Hongik University) ;
  • Suh, Sung-Sup (Department of Chemical Engineering, Hongik University) ;
  • Choi, Moon Kyu (Department of Chemical Engineering, Hongik University)
  • Received : 2013.08.06
  • Accepted : 2013.12.11
  • Published : 2014.03.31

Abstract

Under low pressures of $CF_4$ and $C_2F_6$ up to 20.7 kPa, the equilibrium adsorbed quantity on activated carbon was experimentally examined using the volumetric method at various temperatures between 293.15 K and 333.15 K. To give the best fit to the experimental data curve, the two step model (i.e., Langmuir model for the first layer adsorption and then Freundlich physisorption) is suggested. The method of initial slope yielded the enthalpy of adsorption for the first step while we could apply the Clausius-Clapeyron equation to find the heat of adsorption of the second step. They are 25.9 kJ/mol and 11.8 kJ/mol, respectively, with $CF_4$, and 38.7 and 38.2 kJ/mol with $C_2F_6$.

$CF_4$$C_2F_6$의 압력이 20.7 kPa 이하일 경우, 활성탄에의 평형흡착량을 여러 온도(293.15-333.15 K)에서 실험적으로 조사하였다. 실험데이터가 가장 잘 맞을 수 있도록 1차층 흡착으로 Langmuir모델을 쓰고 그 다음 단계에는 Freundlich 물리흡착을 이용하는 이단계모델을 제안한다. 1단계에 대한 흡착엔탈피를 구하기 위해 실험데이터의 최초기울기를 이용하였고, Clausius-Clapeyron식을 사용함으로써 2단계에 대한 흡착엔탈피를 구하였다. $CF_4$의 경우 1, 2단계의 흡착엔탈피는 각각 25.9와 11.8 kJ/mol이고, $C_2F_6$의 경우는 38.7과 38.2 kJ/mol이다.

Keywords

References

  1. Pulselli, F. M. "Global Warming Potential and the Net Carbon Balance," Encyclopedia of Ecology, Elsevier, 2008, pp. 1741-1746.
  2. Dutta, P. K., and Radner R., "A Strategic Analysis of Global Warming: Theory and Some Numbers," J. Economic Behavior Organization, 71(2), 187-209 (2009). https://doi.org/10.1016/j.jebo.2009.01.013
  3. Lashof, D. A., and Ahuja, D. R., "Relative Contributions of Greenhouse Gas Emissions to Global Warming," Nature, 344, 529-531 (1990). https://doi.org/10.1038/344529a0
  4. Sekiya, A., and Okamoto, S, "Evaluation of Carbon Dioxide Equivalent Values for Greenhouse Gases: CEWN as a New Indicator Replacing GWP," J. Fluorine Chem., 131(2), 364-368 (2010). https://doi.org/10.1016/j.jfluchem.2009.11.020
  5. Naik, V., Jain, A. K., Patten, K. O., and Wuebbles, D. J., "Consistent Sets of Atmospheric Lifetimes and Radioactive Forcings on Climate for CFC Replacements: HCFCs and HFCs," J. Geophysical Res., 105(D5), 6904-6914 (2000).
  6. Tanada, S., Kawasaki, N., Nakamura, T., Ohue, T., and Abe, I., "Adsorbability of 1,1,1,2-tetrafluoroethane (HFC 134a) onto Plasma-treated Activated Carbon in $CF_4$ and $CCl_4$," J. Colloid Interface Sci., 191, 337-340 (1997). https://doi.org/10.1006/jcis.1997.4965
  7. Van Hoeymissen, J. A. B., Daniels, M., Anderson, N., Fyen, W., and Heyns, M., "Gas Stream Analysis and PFC Recovery in a Semiconductor Process," Mat. Res. Soc. Symp. Proc., 447, 55-60 (1997).
  8. Lucas, P. L., van Vuuren, D. P., OlivierJ. G. J., and den Elzen, M. G. J., "Long-term Reduction Potential of Non-$CO_2$ Greenhouse Gases," Environ. Sci. Policy, 10(2), 85-103 (2007). https://doi.org/10.1016/j.envsci.2006.10.007
  9. Johnson, A. D., Entley, W. R., and Maroulis, P. J., "Reducing PFC Gas Emissions from CVD Chamber Cleaning," Solid State Technol., 43, 103-114 (2000).
  10. Tsai, W. T., Chen, H. P., and Hsien, W. Y., "A Review of Uses, Environmental Hazards and Recovery/recycle Technologies of Perfluorocarbons (PFCs) Emissions from the Semiconductor Manufacturing Processes," J. Loss Prev. Process Ind., 15, 65-75 (2002). https://doi.org/10.1016/S0950-4230(01)00067-5
  11. Chang, M. B., and Lee, H. M., "Abatement of Perfluorocarbons with Combined Plasma Catalysis in Atmospheric-pressure Environment," Catal. Today, 89(1), 109-115 (2004). https://doi.org/10.1016/j.cattod.2003.11.016
  12. Brown, R. S., and Rossin, J. A., "Catalytic Technology for PFC Emissions Control," Solid State Technol., 44(7), 189 (2001).
  13. Streif, T., DePinto, G., Dunnigan, S., and Atherton, A., "PFC Reduction through Process and Hardware Optimization," Semiconductor International, 20(June), pp. 129-134 (1997).
  14. Chiarello, R, "ESH issues make progress," Semiconductor International, 24(March), 81-88 (2001).
  15. Sikdar, S. K., Burckle, J., and Rogut, J., "Separation Methods for Environmental Technologies," Environ. Prog., 20(1), 1-11 (2001). https://doi.org/10.1002/ep.670200109
  16. Herzog, F., "Solvent Recovery and Waste Gas Purification with Cryogenic Processes," Studies Environ. Sci., 61, 309-319 (1994). https://doi.org/10.1016/S0166-1116(08)72063-6
  17. Muller, E. A., "Adsorption of Super Greenhouse Gases on Microporous Carbons," Environ. Sci. Technol., 39, 8736-8741 (2005). https://doi.org/10.1021/es050587n
  18. Ahn, N. G., Kang, S. W., Min, B. H., and Suh, S. S., "Adsorption Isotherms of Tetrafluoromethane and Hexafluoroethane on Various Adsorbents," J. Chem. Eng. Data, 51, 451-456 (2006). https://doi.org/10.1021/je0503756
  19. Foder, M., Wimmer, R., Yang, J., and McCay, T., "Recovery of Perfluorocompounds (PFCs) from Semiconductor Manufacturing Processes Using a Membrane-based System," Electrochem. Soc. Proc., 99, 60-69 (1999).
  20. Kowalczyk, P., and Holyst, R., "Efficient Adsorption of Super Greenhouse Gas (Tetrafluoromethane) in Carbon Nanotubes," Environ. Sci. Technol., 42, 2931-2936 (2008). https://doi.org/10.1021/es071306+
  21. Bansal, R. C., and Goyal, M. Activated Carbon Adsorption, Taylor & Francis, Boca Raton, FL, 2005, pp. 243-292.
  22. Yang, R. T., Adsorbents: Fundamentals and Applications, A John Wiley & Sons, Inc., Hoboken, New Jersey, 2003, pp. 303-305.

Cited by

  1. 활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터 vol.26, pp.3, 2014, https://doi.org/10.7464/ksct.2020.26.3.186