DOI QR코드

DOI QR Code

바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam

  • 이광일 (경기대학교 건축공학과 일반대학원) ;
  • 문주현 (경기대학교 건축공학과) ;
  • 양근혁 (경기대학교 건축공학과) ;
  • 지구배 (경기대학교 건축공학과 일반대학원)
  • Lee, Kwang-Il (Department of Architectural Engineering, Kyonggi University) ;
  • Mun, Ju-Hyun (Department of Architectural Engineering, Kyonggi University) ;
  • Yang, Keun-Hyeok (Department of Architectural Engineering, Kyonggi University) ;
  • Ji, Gu-Bae (Department of Architectural Engineering, Kyonggi University)
  • 투고 : 2019.07.22
  • 심사 : 2019.08.19
  • 발행 : 2019.09.30

초록

이 연구의 목적은 바텀애시 골재와 기포를 융합한 경량 콘크리트(bottom ash based lightweight concrete, LWC-BF)의 압축 응력-변형률 모델 제시이다. Yang 등이 제시한 응력-변형률 곡선식에서 LWC-BF 9 배합의 실험으로부터 얻은 탄성계수, 최대응력 시 변형률 그리고 최대응력 이후 최대응력의 50% 응력 시 변형률 값들을 이용하여 상승부와 하강부의 기울기를 결정하였다. 제시된 모델은 기포 혼입율의 증가와 함께 감소되는 초기 강성 및 증가되는 하강부 기울기를 잘 반영하면서 실험결과와 잘 일치하였다. 제시된 모델의 예측값과 실험값의 평균제곱근 오차로부터 결정된 평균값과 표준편차는 각각 0.19와 0.08로서 각각 1.23과 0.47 값을 보이는 fib 2010 모델에 비해 현저히 낮았다.

The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.

키워드

참고문헌

  1. ACI Committee 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute.
  2. ASTM C 469. (2010). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, American Society for Testing and Materials.
  3. ComitC Euro-International du Beton. (2010). fib Model Code for Concrete Structures 2010, International Federation for Structural Concrete.
  4. Korean Standards Association. (2018). Concrete Aggregate[KS F 2527], Korean Standards Association.
  5. Lee, K.H. (2013). Development of Mixture Proportioning Model for Low-Density High-Strength Foamed Concrete, Master's Thesis, Kyonggi University, Korea.
  6. Lee, K.H. (2019). Reliable Model Proposals for Mechanical Properties and Mixing Proportioning of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules, Ph.D Thesis, Kyonggi University, Korea.
  7. Lee, H.K., Gong, H.M., Beak, S.M., Kim, W.S., Kwak, Y.K. (2013). An experimental study on the size effect of reinforced concrete members with stirrups using recycled coarse aggregates, Journal of the Korea Society of Waste Management Institute, 34(2), 188-198.
  8. Lee, K.I. (2019). Compressive Strength and Thermal Conductivity of Lightweight Concrete using Bottom Ash Aggregates and Air Foam, Master's Thesis, Kyonggi University.
  9. Mun, J.H., Mun, J.S., Yang, K.H. (2013). Stress-strain relationship of heavyweight concrete using magnetite aggregate, Journal of the Architectural Institute of Korea, 29(8), 85-92.
  10. Sim, J.I., Yang, K.H. (2011). Mechanical properties of lightweight aggregate concrete according to the substitution rate of natural sand and maximum aggregate size, Journal of the Korea Concrete Institute, 23(5), 551-558. https://doi.org/10.4334/JKCI.2011.23.5.551
  11. Yang, K.H., Song, J.K., Lee, K.H. (2011). A stress-strain relationship of alkali-activated slag concrete, Journal of the Korea Concrete Institute, 23(6), 765-772. https://doi.org/10.4334/JKCI.2011.23.6.765
  12. Yang, K.H., Mun, J.H., Cho, M.S., Kang, H.K. (2014). Stress-strain model for various unconfined concretes in compression, ACI Structural Journal, 111(4), 819-826.