• Title/Summary/Keyword: initial curing concrete

Search Result 112, Processing Time 0.031 seconds

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

A Study on the High Early Strength Admixture Material for Improving on Reduced Initial Strength and Quality of Concrete in Cold Weather (동절기 콘크리트 초기 강도저하 및 품질 개선을 위한 조강형 혼화재료 활용에 대한 연구)

  • Kim, Sae-Jong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.25-26
    • /
    • 2022
  • The purpose of this study is to prevent serious disasters in cold weather by presenting an optimal blending design for securing high early strength when placing concrete by analyzing the properties and compressive strength of concrete formulations using high early strength admixture materials.

  • PDF

Fundamental Properties of Low-Heat Concrete According to the Mixing Rate of Super Retarding Agent (초지연제 혼입률에 따른 저발열 콘크리트의 양생온도별 기초물성평가)

  • Park, Byoung-Joo;Choi, Yoon-Ho;Hyun, seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.90-91
    • /
    • 2020
  • As the construction site has become narrower recently, the importance of mass concrete is naturally being highlighted as skyscrapers become popular. However, it is not possible to install the entire volume per day if the mass concrete is installed due to the Remicon 8⦁5 system and the 52-hour workweek system. When the mass concrete base is divided into several days, cold joints occur because the consolidation of joints is not integrated due to different degree of hardening in the case of the previous layer and the next day. As a result, existing research has shown that if super retarding agent are mixed into Ready Mixed Concrete (hereinafter referred to as Remicon) using sugar as a raw material to delay the curing time of concrete, cold joints are inhibited and cracks are inhibited by reducing the initial hydration heat.

  • PDF

Estimation of Setting Time and Compressive Strength of the Concrete According to Curing Conditions Using a Hybrid Meter (하이브리드 미터를 이용한 양생조건에 따른 응결 및 압축강도 추정)

  • Park, Jae-Woong;Jeong, Jun-Taek;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.187-188
    • /
    • 2023
  • This study aimed to evaluate a feasibility of estimating setting time and compressive strength of curing conditions using a Hybrid meter. As a result, It was determined that the measured hardness value at the initial set, final set and at 5MPa of the Hybrid meter were not affected by curing conditions. And the Hybrid meter(A) is confirmed to have a higher correlation, so it is judged to be more suitable for pratical use.

  • PDF

Evaluation of Strength and Chloride Diffusion in Concrete with FA Considering Temperature Effect (FA를 혼입한 콘크리트의 온도 영향을 고려한 강도 및 염화물 확산성 평가)

  • Keun-Hyeok Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.62-69
    • /
    • 2023
  • For the nuclear power concrete plant structures in the UAE, it is necessary to consider the deterioration from high sulfate ions in the atmosphere and high chloride ions from the coast. In this study, two strength grade concrete mixture (40 MPa and 27 MPa) and two curing/diffusion temperatures (20 ℃ and 50 ℃) were considered for evaluating the temperature effects on diffusion and strength due to high average temperature above 38 ℃ a year in UAE. When the initial curing temperature was high, the compressive strength increased in high-temperature curing to 7 days, but the strength slightly increased in the 20 ℃ curing condition at 28 days. Regarding diffusion test, unlike the compressive test results, reduced chloride diffusion coefficients were evaluated both in 40 MPa and 27 MPa grade at 28 days. In the case of 91 days of curing, an increase in diffusivity due to high temperature and a decrease in diffusivity due to age effect occur simultaneously. Compared to the results of the curing and diffusion tests at 20 ℃ and 28 days, when the curing and diffusion tests were conducted at 50 ℃ in 91 days, the diffusion coefficients decreased to 76.2 % in 40 MPa grade and 85.4 % in 37 MPa grade with increasing curing period, respectively.

Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges

  • Abbas, S.;Nehdi, M.L.;Saleem, M.A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.271-295
    • /
    • 2016
  • In this study, an extensive literature review has been conducted on the material characterization of UHPC and its potential for large-scale field applicability. The successful production of ultra-high performance concrete (UHPC) depends on its material ingredients and mixture proportioning, which leads to denser and relatively more homogenous particle packing. A database was compiled from various research and field studies around the world on the mechanical and durability performance of UHPC. It is shown that UHPC provides a viable and long-term solution for improved sustainable construction owing to its ultrahigh strength properties, improved fatigue behavior and very low porosity, leading to excellent resistance against aggressive environments. The literature review revealed that the curing regimes and fiber dosage are the main factors that control the mechanical and durability properties of UHPC. Currently, the applications of UHPC in construction are very limited due to its higher initial cost, lack of contractor experience and the absence of widely accepted design provisions. However, sustained research progress in producing UHPC using locally available materials under normal curing conditions should reduce its material cost. Current challenges regarding the implementation of UHPC in full-scale structures are highlighted. This study strives to assist engineers, consultants, contractors and other construction industry stakeholders to better understand the unique characteristics and capabilities of UHPC, which should demystify this resilient and sustainable construction material.

A Study on the Prediction of Concrete Strength Based on Maturity Method for Calculating the Concrete Strength Correction Value (mSn) of Two-Component Concrete (2성분계 콘크리트의 구조체 보정강도(mSn) 산정을 위한 적산온도 기반 콘크리트의 압축강도 예측 연구)

  • Kim, Han-Sol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.129-130
    • /
    • 2023
  • The compressive strength of concrete is greatly affected by the temperature inside the concrete at the initial age immediately after pouring. In the KCI Concrete Standard Specification, only the temperature correction strength (Tn) according to the curing temperature is applied in the mixing strength calculation formula, and mSn is not considered. The formula based on the Chrino model of the blast furnace slag concrete was calculated, and the strength of the structural concrete and the strength of the water cured specimen in the same mixture were compared with the predicted strength. As a result, the error between the predicted strength and the measured strength was greater in the structural concrete than in the concrete specimen.

  • PDF

Development of Drying Shrinkage Model for HPC Based on Degree of Hydration by CEMHYD-3D Calculation Result (CEMHYD-3D로 예측된 수화도를 기초로 한 고성능 콘크리트의 건조수축 모델제안)

  • Kim Jae Ki;Seo Jong-Myeong;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.501-504
    • /
    • 2004
  • This paper proposes degree of hydration based shrinkage prediction model of 40MPa HPC. This model shows degree of hydration which is defined as the ratio between the hydrated cement mass and the initial mass of cement is very closely related to shrinkage deformation. In this study, degree of hydration was determined by CEMHYD-3D program of NIST. Verification of the predicted degree of hydration is performed by comparison between test results of compressive strength and estimated one by CEMHYD-3D. Proposed model is determined by statistical nonlinear analysis using the program Origin of Origin Lab. Co. To get coefficients of the model, drying shrinkage tests of four specimen series were followed with basic material tests. Testes were performed in constant temperature /humidity chamber, with difference moisture curing ages to know initial curing time effect. Verification with another specimen, collected construction field of FCM bridge, was given in the same condition as pre-tested specimens. Finally, all test results were compared to propose degree of hydration based model and other code models; AASHTO, ACI, CEB-FIP, JSCE, etc.

  • PDF

Analysis on the Heat Insulation Performance of Cold Weather Concrete according to Change of Laid Construction Conditions of Double Bubble Sheets (이중버블시트의 포설 시공조건 변화에 따른 한중 콘크리트의 단열보온 성능 분석)

  • Han, Cheon-Goo;Han, Min-Cheol;Baek, Dae-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.121-128
    • /
    • 2010
  • The present research examined heat insulation performance according to change of various laid construction conditions of double bubble sheet being used as material for heat insulation & curing construction of cold weather concrete, and its results are as follows. First, the change in a laid period of bubble sheet within 4 hours and the change in water content inside bubble sheet overall showed similar temperature history and maturity without a big difference in terms of the temperature history of concrete according to construction factors, but it could be confirmed that when a structure was thin or several bubble sheets are laid, requisites unfavorable for initial curing of concrete can occur if a lagger distance between sheets is generated. In terms of the compressive strength of concrete core specimens, it appeared that the initial compressive strength is declined when conditions unfavorable for concrete curing such as delay of a laid period of bubble sheets, induction of large distance between sheets, increase of water content inside bubble sheets and thinness of a structure of placing concrete, etc. were applied, but it appeared that as its age passes, the difference becomes small.

Development of cold weather concrete by using do-icing agency (방동제를 이용한 한중 콘크리트 개발 연구)

  • 유성원;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.953-958
    • /
    • 2001
  • The concrete which has placed under cold weather has some defects such as the decrease of initial strength by hydration delay, strength unrecover at unhardened concrete freezing and structural failure and crack by expansion pressure. So, in this study, we tried to develope the concrete which can be made under cold weather without defect by using of do-icing agency In concrete test, the used do-icing agency has the characteristics of de-icing and rapid hydration. By test results, Co{$NH_{2}$$]_{2}$is unsuitable for workability, and NaN$O_{2}$ is the most suitable agency for cold weather. And for curing, the cured concrete at $21^{\circ}C$ for 24 hours has the safe strength.

  • PDF