• Title/Summary/Keyword: inhomogeneous beam

Search Result 57, Processing Time 0.025 seconds

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF

The Usability Evaluation Half Beam Radiation Treatment Technique on the Esophageal Cancer (식도암 환자에서의 Half Beam 치료법의 유용성 평가)

  • Park, Hochoon;Kim, Youngjae;Jang, Seongjoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.287-293
    • /
    • 2015
  • Because of esophageal cancer has the long length of the lesion and also inhomogeneous in depth. So, the radiation dose distribution was inhomogeneous in radiation therapy. To overcomes the dose distribution uniformity using half beam method. Patient's CT image was used radiation treatment planning. We used two planning methods that one is the using normal beam and another is using half beam. Than comparing the two radiotherapy planning using target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues - heart, spinal cord, lung -. In results, Treatment planning using half beam is little more than normal beam in target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues covering. However, If the patient is not correct position patients may arise a side effect. Thus, the using in Half beam involving the geometrically exact under lung cancer is considered to advantage.

The Evaluation of the dose calculation algorithm(AAA)'s Accuracy in Case of a Radiation Therapy on Inhomogeneous tissues using FFF beam (FFF빔을 사용한 불균질부 방사선치료 시 선량계산 알고리즘(AAA)의 정확성 평가)

  • Kim, In Woo;Chae, Seung Hoon;Kim, Min Jung;Kim, Bo Gyoum;Kim, Chan Yong;Park, So Yeon;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.321-327
    • /
    • 2014
  • Purpose : To verify the accuracy of the Ecilpse's dose calculation algorithm(AAA:Analytic anisotropic algorithm) in case of a radiation treatment on Inhomogeneous tissues using FFF beam comparing dose distribution at TPS with actual distribution. Materials and Methods : After acquiring CT images for radiation treatment by the location of tumors and sizes using the solid water phantoms, cork and chest tumor phantom made of paraffin, we established the treatment plan for 6MV photon therapy using our radiation treatment planning system for chest SABR, Ecilpse's AAA(Analytic anisotropic algorithm). According to the completed plan, using our TrueBeam STx(Varian medical system, Palo Alto, CA), we irradiated radiation on the chest tumor phantom on which EBT2 films are inserted and evaluated the dose value of the treatment plan and that of the actual phantom on Inhomogeneous tissue. Results : The difference of the dose value between TPS and measurement at the medial target is 1.28~2.7%, and, at the side of target including inhomogeneous tissues, the difference is 2.02%~7.40% at Ant, 4.46%~14.84% at Post, 0.98%~7.12% at Rt, 1.36%~4.08% at Lt, 2.38%~4.98% at Sup, and 0.94%~3.54% at Inf. Conclusion : In this study, we discovered the possibility of dose calculation's errors caused by FFF beam's characteristics and the inhomogeneous tissues when we do SBRT for inhomogeneous tissues. SBRT which is most popular therapy method needs high accuracy because it irradiates high dose radiation in small fraction. So, it is supposed that ideal treatment is possible if we minimize the errors when planning for treatment through more study about organ's characteristics like Inhomogeneous tissues and FFF beam's characteristics.

Determination of Incident Angle and Position of Optimal Mode Ultrasonic Beam for Flaw Detection in Anisotropic and Inhomogeneous Weldments by Ray Tracing

  • Zhao, Xinyu;Song, Sung-Jin;Kim, Hak-Joon;Gang, Tie;Kang, Suk-Chull;Choi, Yong-Hwan;Kim, Kyung-Cho;Kang, Sung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2007
  • Ultrasonic inspection of austenitic steel weldments is a truly difficult task due to complicated wave propagation phenomena such as beam skewing, splitting and distortion. In order to understand these phenomena and design proper inspection procedures, simulation is increasingly paid more attention to. This article addresses a ray tracing based approach to determine incident angle and position of optimal wave mode ultrasonic beam for flaw detection in anisotropic and inhomogeneous austenitic steel weldments. Specially, the optimal mode of ultrasonic wave wave is selected by ray tracing simulation, and an optimization approach based on ray tracing and bi-section search is proposed in order to find the ray path connecting two given points in weldments. With help of this approach, the optimal incident angle and position of ultrasonic beam can be determined for a given flaw position.

Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes

  • Wu, Xiongwei;Fang, Ting
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.617-627
    • /
    • 2022
  • In the current study, the nonlinear impact of the Von-Kármán theory on the vibrational response of nonhomogeneous structures of functionally graded (FG) nano-scale tubes is investigated according to the nonlocal theory of strain gradient theory as well as high-order Reddy beam theory. The inhomogeneous distributions of temperature-dependent material consist of ceramic and metal phases in the radial direction of the tube structure, in which the thermal stresses are applied due to the temperature change in the thickness of the pipe structure. The general motion equations are derived based on the Hamilton principle, and eventually, the acquired equations are solved and modeled by the Meshless approach as well as a computer simulation via intelligent mathematical methodology. The attained results are helpful to dissect the stability of the MEMS and NEMS.

Natural Frequencies for Inhomogeneous Beams by Differential Transformation (미분변환에 의한 비균질 보의 진동해석)

  • Mun, Kwon-Kyung;Jae, Shin-Yung;Ryu, Yung-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.617-621
    • /
    • 2001
  • This paper presents the application of the technique of differential transformation to find the vibration frequencies for inhomogeneous beams with one sliding support, the other clamped and the other pinned boundary conditions. Numerical calculations are carried out. The frequencies obtained from the differential-transformation solutions are compared to published results to demonstrate the accuracy and flexibility of the method.

  • PDF

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.

Multilayered viscoelastic beam loaded in torsion under strain-path control: A delamination analysis

  • Victor I. Rizov
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.87-102
    • /
    • 2024
  • This paper is focused on the delamination analysis of a multilayered beam structure loaded in torsion under strain-path control. The beam under consideration has a rectangular cross-section. The layers of the beam are made of different viscoelastic materials which exhibit continuous inhomogeneity in longitudinal direction. Since the delamination is located inside the beam structure, the torsion moments in the two crack arms are obtained by modeling the beam as an internally static undetermined structure. The strain energy stored in the beam is analyzed in order to derive the strain energy release rate (SERR). Since the delamination is located inside the beam, the delamination has two tips. Thus, solutions of the SERR are obtained for both tips. The solutions are verified by analyzing the beam compliance. Delamination analysis with bending-torsion coupling is also performed. The solutions derived are timedependent due to two factors. First, the beam has viscoelastic behavior and, second, the angle of twist of the beam-free end induced by the external torsion moment changes with time according to a law that is fixed in advance.

Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation

  • Aizikovich, Sergey M.;Mitrin, Boris I.;Seleznev, Nikolai M.;Wang, Yun-Che;Volkov, Sergey S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.613-625
    • /
    • 2016
  • Contact interaction of a beam (flexible element) with an elastic half-plane is considered, when a soft inhomogeneous (functionally graded) interlayer is present between them. The beam is bent under the action of a distributed load applied to the surface and a reaction of the elastic interlayer and the half-space. Solution of the contact problem is obtained for different values of thickness and parameters of inhomogeneity of the layer. The interlayer is assumed to be significantly softer than the underlying half-plane; case of 100 times difference in Young's moduli is considered as an example. The influence of the interlayer thickness and gradient of elastic properties on the distribution of the contact stresses under the beam is studied.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF