• Title/Summary/Keyword: inhomogeneity problems

Search Result 15, Processing Time 0.034 seconds

Micromechanical Properties in Elastically Inhomogeneous Materials (Part I : Theoretical Basis) (탄성 불균질 재료의 미시역학거동 (Part I :이론적 기초))

  • Gang, Chang-Seok;Hong, Seong-Gil;Wakashima, Kenji
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.354-360
    • /
    • 2001
  • By applying Eshelby's theory on the'transformation' and' inhomogeneity'problems of an ellipsoidal inclusion, a microscopic stress-strain is formulated for a composite material consisting of a matrix and a large number of aligned ellipsoidal inclusions. Some of the composites of practical interest, such as unidirectionally fiber- reinforced, Particle dispersion strengthened and layered composites can be treated by changing the axial ratios of the ellipsoidal inclusion. The macroscopic stress-strain relation obtained is applicable to elastic and elasto-plastic deformation of the composite in uniform loading.

  • PDF

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • Hashimoto, Gaku;Noguchi, Hirohisa
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.251-278
    • /
    • 2008
  • In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF

Intercomparison of Change Point Analysis Methods for Identification of Inhomogeneity in Rainfall Series and Applications (강우자료의 비동질성 규명을 위한 변동점 분석기법의 상호비교 및 적용)

  • Lee, Sangho;Kim, Sang Ug;Lee, Yeong Seob;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.671-684
    • /
    • 2014
  • Change point analysis is a efficient tool to understand the fundamental information in hydro-meteorological data such as rainfall, discharge, temperature etc. Especially, this fundamental information to change points to future rainfall data identified by reasonable detection skills can affect the prediction of flood and drought occurrence because well detected change points provide a key to resolve the non-stationary or inhomogeneous problem by climate change. Therefore, in this study, the comparative study to assess the performance of the 3 change point detection skills, cumulative sum (CUSUM) method, Bayesian change point (BCP) method, and segmentation by dynamic programming (DP) was performed. After assessment of the performance of the proposed detection skills using the 3 types of the synthetic series, the 2 reasonable detection skills were applied to the observed and future rainfall data at the 5 rainfall gauges in South Korea. Finally, it was suggested that BCP (with 0.9 posterior probability) could be best detection skill and DP could be reasonably recommended through the comparative study. Also it was suggested that BCP (with 0.9 posterior probability) and DP detection skills to find some change points could be reasonable at the North-eastern part in South Korea. In future, the results in this study can be efficiently used to resolve the non-stationary problems in hydrological modeling considering inhomogeneity or nonstationarity.

The Influences of Front and Back Tensions on The Development of Rolling Textures in IF Steel (IF강의 페라이트역 압연시 전.후방 인장이 집합조직에 미치는 영향)

  • 신형준;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.349-355
    • /
    • 1999
  • The texture inhomogeniety during rolling is one of the greatest problems. Especially, shear texture develops more easily during ferritic rolling of steel sheets at high temperatures due to friction between rolls and the material. In this study, the influence of front and back tensions on the texture development during ferritic rolling has been studied. The rolling textures were simulated using the full constrains Taylor-Bishiop-Hill model with the strain history obtained from finite element analysis. The calculated textures showed that the back tension rolling could reduce the shear component more effectively than front tension or rolling without tension. However, the experimental results showed that the lension effect was very small compared to our prediction. It might be attributed to initial texture and difference in frictions between simulation and experiments.

  • PDF

Analysis of heat conduction of cylinder block of turbocharged gasoline engine by boundary element method (경계요소법에 의한 터보과급 가솔린기관 실린더블럭의 열전도 해석)

  • 김은태;최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.41-54
    • /
    • 1989
  • In this study, steady state heat conduction problems of the cylinder block of turbocharged gasoline engine were solved by the boundary element method. Surface of the cylinder block was divided by the triangular cells with constant potential. Temperature distribution, effective heat transfer coefficient of the cylinder block were investigated with variation of equivalence ratio, engine speed and boost pressure. The results show that maximum temperature of cylinder block increase rapidly with increasing engine speed and boost pressure. The monolithic structure of cylinder block results in sever inhomogeneity of inner wall temperature at the high engine speed and boost pressure.

  • PDF

Theory and technology of growing striation-free crystals

  • Scheel, Hans J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.174-186
    • /
    • 2004
  • Striations are growth-induced inhomogeneities which hamper the applications of solid-solution crystals and of doped crystals in numerous technologies. Thus the optimized performance of solid solutions often can not be exploited. The inhomogeneity problem can be solved in specific cases by achieving a distribution coefficient one in growth from melts and from solutions. Macrostep-induced striations can be suppressed by controlling the growth mode, by achieving growth on facets thereby preventing step bunching. Thermal striations are commonly assumed to be caused by convective instabilities so that reduced convection by microgravity or by damping magnetic fields was and is widely attempted to reduce such inhomogeneities. Here it will be shown that temperature fluctuations at the growth interface cause striations, and that hydrodynamic fluctuations in a quasi-isothermal growth system do not cause striations. The theoretically derived conditions were experimentally established and allowed the growth of striation-free crystals of $KTa_{1-x}Nb_xO_3$"KTN" solid solutions. Hydrodynamic variations from the accelerated crucible rotation technique ACRT did not cause striations as long as the temperature was controlled within $0.03^{\circ}$ at $1200^{\circ}C$ growth temperature. Alternative approaches to solve or reduce the segregation and striation problems in growth from melts and from solutions are discussed as well.

Crystallization of srAl2O4 Synthesized by the Polymerized Complex Method (착체중합법으로 합성한 srAl2O4의 핵생성 관찰)

  • 김형준;박정현
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.439-443
    • /
    • 2004
  • SrAl$_2$O$_4$ powder was prepared by polymerized complex method and its nucleation was observed at different temperatures and times. Problems of inhomogeneity and high synthesis temperature induced by solid state reaction could be solved by using polymeric precursors. The process of decomposition by heat treatment above 40$0^{\circ}C$ was observed by Scanning Electron Microscopy (SEM) and elemental analyzer. Crystallization of SrAl$_2$O$_4$ occured at about 90$0^{\circ}C$ and its crystalline size. which was determined by using Transmission Electron Microscopy (TEM) and X-Ray Diffractometer (XRD). was about 30∼50 nm.

Low Temperature Sintering and Electrical Properties of Bi-based ZnO Chip Varistor (Bi계 ZnO 칩 바리스터의 저온소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.876-881
    • /
    • 2011
  • The sintering, defect and grain boundary characteristics of Bi-based ZnO chip varistor (1,608 mm size) have been investigated to know the possibility of lowering a manufacturing price by using 100 % Ag inner-electrode. The samples were prepared by general multilayer chip varistor process and characterized by shrinkage, SEM, current-voltage (I-V), admittance spectroscopy (AS), impedance and modulus spectroscopy (IS & MS) measurement. There are no problems to make a chip varistor with 100% Ag inner-electrode in the sintering temperature range of 850~900$^{\circ}C$ for 1 h in air. A good varistor characteristics ($V_n$= 9.3~15.4 V, a= 23~24, $I_L$= 1.0~1.6 ${\mu}A$) were revealed but formed $Zn_i^{{\cdot}{\cdot}}$(0.209 eV) as dominant defect, and increased the distributional inhomogeneity and the temperature instability in grain boundary barriers.

Comparison and Optimization of Parallel-Transmission RF Coil Elements for 3.0 T Body MRI (3.0 T MRI를 위한 Parallel-Transmission RF 코일 구조의 비교와 최적화)

  • Oh, Chang-Hyun;Lee, Heung-K.;Ryu, Yeun-Chul;Hyun, Jung-Ho;Choi, Hyuk-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.61-63
    • /
    • 2007
  • In high field (> 3 T) MR imaging, the magnetic field inhomogeneity in the target object increases due to the nonuniform electro-magnetic characteristics and relatively high Larmor frequency. Especially in the body imaging, the effect causes more serious problems resulting in locally high SAR(Specific Absorption Ratio). In this paper, we propose an optimized parallel-transmission RF coil element structure and show the utility of the coil by FDTD simulations to overcome the unwanted effects. Three types of TX coil elements are tested to maximize the efficiency and their driving patterns(amplitude and phase) optimized to have adequate field homogeneity, proper SAR level, and sufficient field strength. For the proposed coil element of 25 cm ${\times}$ 8 cm loop structure with 12 channels for a 3.0 T body coil, the 73% field non-uniformity without optimization was reduced to about 26% after optimization of driving patterns. The experimental as well as simulation results show the utility of the proposed parallel driving scheme is clinically useful for (ultra) high field MRI.

  • PDF