• Title/Summary/Keyword: inhibition of human platelet aggregation

Search Result 61, Processing Time 0.026 seconds

In Vitro Effect of Aspalatone on Platelet Aggregation and Thromboxane Production in Human Platelet Rich Plasma

  • Suh, Dae-Yeon;Han, Byung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.4 no.2
    • /
    • pp.122-126
    • /
    • 1996
  • In vitro inhibitory effect of aspalatone ((3-(2-methyl-4-pyronyl)]-2-acetyloxybenzoate) on collagen-, ADP-, and epinephrine-induced platelet aggregation in human platelet rich plasma (PRP) was compared with the effects of reference drugs (acetylsalicylic acid, cilostazol and ticlopidine). Aspalatone inhibited time and dose dependently human platelet aggregation induced by collagen; relative potency was in the order of cilostazol>acetylsalicylic acid>aspalatone>ticlopidine. Aspalatone, like acetylsalicylic acid, potently inhibited only the secondary phase of ADP-and epinephrine-induced aggregation. Thromboxane $B^2$ production evoked by collagen in human PRP was inhibited significantly and concentration-dependently by aspalatone and acetylsalicylic acid. These results were in agreement with the earlier studies in which the antiplatelet action of aspalatone was indicated to be due to the inhibition of platelet cyclooxygenase activity (Han et al., Arzneim. Forsch./Drug Res. 44(II), 1122, 1994; Suh and Han, Yakhak Hoeji 39, 565, 1995). In addition, the inhibitory activity of aspalatone on the platelet aggregation appears to be inversely related to the rate of nonspecific deacetylation of the drug in plasma.

  • PDF

Anti-Platelet Aggregation Effect of Extract from Gamisopunghwalheol-tang in Vitro (가미소풍활혈탕의 혈소판 응집억제 작용에 대한 in vitro 연구)

  • Lee, Hae-Yong;Min, Kyoung-Yoon;Kim, Seul-Ji;Park, Youn-Ju;Yang, Ga-Eun;Lee, Mi-Jung;Lew, Jae-Whan;Lee, Beom-Joon;Cho, In-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.980-985
    • /
    • 2009
  • The study was designed to test anti-platelet effect and find out anti-platelet mechanism of extract from Gamisopunghwalheol-tang in vitro. The extract was investigated for the inhibition against the aggregation of human platelet suspensions induced from collagen by aggregometer. And also the extract was investigated for the inhibition against the aggregation of human platelet suspensions who is taking aspirin or clopidogrel induced from collagen by aggregometer. In collagen-induced platelet aggregation test, the extract significantly inhibited collagen-induced platelet aggregation in a concentration-dependent manner(p<0.05). The extract significantly inhibited collagen-induced platelet aggregation of human platelet who is taking aspirin or clopidogrel ing 0 mg/ml concentration(p<0.05). And the extract inhibited more ingpatients who is taking aspirin. These results show that the extract from Gamisopunghwalheol-tang has anti-platelet aggregation effect.

Inhibitory Effect of Scopoletin on U46619-induced Platelet Aggregation through Regulation of Ca2+ Mobilization

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Platelet aggregation is essential for hemostatic process in case of blood vessels damages. However, excessive platelet aggregation can cause cardiovascular disorders including atherosclerosis, thrombosis and myocardial infarction. Scopoletin is usually found in the roots of genus Scopolia or Artemisia, and is known to have anticoagulant and anti-malarial effects. This study investigated the effect of scopoletin on human platelet aggregation induced by U46619, an analogue of thromboxane $A_2(TXA_2)$. Scopoletin had anti-platelet effects by down-regulating $TXA_2$ and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), the aggregation-inducing molecules generated in activated platelets. On the other hand, scopoletin increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are known to be intracellular $Ca^{2+}$ antagonists. This resulted in inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in U46619-induced human platelet aggregation. In addition, scopoletin inhibited the release of adenosine trisphosphate (ATP) in dose-dependent manner. This result means that the aggregation amplification activity through the granule secretion in platelets was suppressed by scopoletin. Therefore, we demonstrated that scopoletin has a potent antiplatelet effect and is highly likely to prevent platelet-derived vascular disease.

Inhibitory Effects of Yuzu and Its Components on Human Platelet Aggregation

  • Kim, Tae-Ho;Kim, Hye-Min;Park, Se Won;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.149-155
    • /
    • 2015
  • Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, $TXB_2$ formations, and $PLC{\gamma}$/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited $TXB_2$ formation and ADP release. The phosphorylation of $PLC{\gamma}$ and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of $PLC{\gamma}$ and Akt, leading to a decrease in $TXB_2$ formation and granule secretion.

Inhibitory effects of artemether on collagen-induced platelet aggregation via regulation of phosphoprotein inducing PI3K/Akt and MAPK

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.167-172
    • /
    • 2022
  • Pathophysiological reaction of platelets in the blood vessel is an indispensable part of thrombosis and cardiovascular disease, which is the most common cause of death in the world. In this study, we performed in vitro assays to evaluate antiplatelet activity of artemether in human platelets and attempted to identify the mechanism responsible for protein phosphorylation. Artemether is a derivative of artemisinin, known as an active ingredient of Artemisia annua, which has been reported to be effective in treating malaria, and is known to function through antioxidant and metabolic enzyme inhibition. However, the role of artemether in platelet activation and aggregation and the mechanism of action of artemether in collagen-induced human platelets are not known until now. In this study, the effect of artesunate on collagen-induced human platelet aggregation was confirmed and the mechanism of action of artemether was clarified. Artemether inhibited the phosphorylation of PI3K/Akt and Mitogen-activated protein kinases, which are phosphoproteins that are known to act in the signal transduction process when platelets are activated. In addition, artemether decreased TXA2 production and decreased granule secretion in platelets such as ATP and serotonin release. As a result, artemether strongly inhibited platelet aggregation induced by collagen, a strong aggregation inducer secreted from vascular endothelial cells, with an IC50 of 157.92 μM. These results suggest that artemether has value as an effective antithrombotic agent for inhibiting the activation and aggregation of human platelets through vascular injury.

Effects of Danggi-Jakyak-San on Antiplatelet and Antihemolysis Activity of in Human blood

  • Sa, Eun-Ho;Son, Soo-Gon;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.460-466
    • /
    • 2006
  • We wondered whether the mechanisms of antiplatelet aggregation of DJS-WE were through multiple pathways. Danggijakyak-san(DJS) consisting of 6 herbes of Paeoniae Radix, Poria Cocos, Angelicae Sinensis Radix, Cnidii Rhizoma, Atractylodis Macrocephalae Rhizoma and Alismatis Rhizoma, is a crude mixture of a commonly used Korean herbal medicine. The water extract (DJS-WE) of DJS has been known to have an anti-platelet aggregation activity. We have reported that DJS-WE inhibited ADP-induced aggregation as well as arachidonic acid-induced aggregation of human platelet. Clinical studies on the cardiovascular effects of DJS-WE have been done in Korea. The DJS has been used as a remedy for gastrointestinal disorders (abdominal pain, dysentery), headache, amenorrhea, and postpartum hemorrhage. It has also been claimed to have a remarkable central stimulant effect, a transient hypertensive effect, and positive inotropic and chronotropic effects. In this paper, we evaluated the possible mechanisms of the antiplatelet activity of DJS-WE using human platelets. On the other hand, the role of DJS-ethanol extract on the inhibition of platelet aggregation and hemolytic effect have not yet been investigated in detail. We also used the method of activated partial thromboplastin times (APTT) for the first time to study the inhibition on platelet aggregation activity of DJS-ethanol extract. The effect of DJS-WE on hemolysis was also investigated. DJS-WE showed a high hemolysis ability on human blood.

Antiplatelet activity of esculetin through the down-regulation of PI3K/MAPK pathway

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.317-322
    • /
    • 2021
  • Among the different cardiovascular disorders (CVDs), the activation of platelets is a necessary step. Based on this knowledge, therapeutic treatments for CVDs that target the disruption of platelet activation are proving to be worthwhile. One such substance, a bioactive 6,7-dihydroxy derived from coumarin, is 6,7-Dihydroxy-2H-1-benzopyran-2-one (esculetin). This compound has demonstrated several pharmacological effects on CVDS as well as various other disorders including diabetes, obesity, and renal failure. In various reports, esculetin and its effect has been explored in experimental mouse models, human platelet activation, esculetin-inhibited collagen, and washed human platelets exhibiting aggregation via arachidonic acid. Yet, esculetin affected aggregation with agonists like U46619 or thrombin in no way. This study investigated esculetin and how it affected human platelet aggregation activated through U46619. Ultimately, we confirmed that esculetin had an effect on the aggregation of human platelets when induced from U46619 and clarified the mechanism. Esculetin interacts with the downregulation of both phosphoinositide 3-kinase/Akt and mitogen-activated protein kinases, important phosphoproteins that are involved in activating platelets and their signaling process. The effects of esculetin reduced TXA2 production, phospholipase A2 activation, and platelet secretion of intracellular granules (ATP/serotonin), ultimately causing inhibition of overall platelet aggregation. These results clearly define the effect of esculetin in inhibiting platelet activity and thrombus formation in humans.

Antiplatelet Effect of Cudraxanthone L Isolated from Cudrania tricuspidata via Inhibition of Phosphoproteins

  • Shin, Jung-Hae;Rhee, Man Hee;Kwon, Hyuk-Woo
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.295-302
    • /
    • 2020
  • Cudrania tricuspidata (C. tricuspidata) is a deciduous tree found in Japan, China and Korea. The root, stems, bark and fruit of C. tricuspidata has been used as traditional herbal remedies such as eczema, mumps, acute arthritis and tuberculosis. In this study, we investigated the potential efficacies of this natural compound by focusing on the inhibitory effect of cudraxanthone L (CXL) isolated from the roots of C. tricuspidata on human platelet aggregation. Our study focused on the action of CXL on collagen-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding, intracellular calcium mobilization, fibronectin adhesion, dense granule secretion, and thromboxane A2 secretion. In addition, we investigated the inhibitory effect of CXL on thrombin-induced clot retraction. Our results showed that CXL inhibited collagen-induced human platelet aggregation, intracellular calcium mobilization, fibrinogen binding, fibronectin adhesion and clot retraction without cytotoxicity. Therefore, we confirmed that CXL has inhibitory effects on human platelet activities and has potential value as a natural substance for preventing thrombosis.

Anti-platelet Aggregation Effect of Cheongpyesagan-tang In Vitro (청폐사간탕(淸肺瀉肝湯)의 혈소판 응집억제 작용에 대한 in vitro 연구)

  • Park, Young-Ju;Kim, Seul-Ji;Yang, Ga-Eun;Lee, Mi-Jung;Lee, Ji-Sook;Kang, Deok-Hui;Kim, Young-Chan;Lee, Woo-Kyung;Ryu, Jae-Hwan
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.714-721
    • /
    • 2010
  • Objective : The study was designed to test the anti-platelet effect of the extract Cheongpyesagan-tang and compare it with aspirin in vitro. Methods : The extract from Cheongpyesagan-tang was made by the pharmacy department of Kyung Hee Oriental Medical Hospital. The extract was investigated for inhibition against the collagen induced aggregation of human platelet suspensions on aggregometry. Aspirin and aspirin-Cheongpyesagan-tang were investigated together. Results : 1. In collagen induced human platelet aggregation test, the extract from Cheongpyesagan-tang significantly inhibited in concentration 30mg/ml (p<0.05), 40mg/ml, 50mg/ml (p<0.001) and the effect depended on concentration over 20mg/ml. 2. Aspirin and aspirin-Cheongpyesagan-tang inhibited collagen induced human platelet aggregation significantly (p<0.001). Aspirin-extract of Cheongpyesagan-tang inhibition rate was higher than aspirin only (p<0.05). Conclusions : The extract of Cheongpyesagan-tang has anti-platelet aggregation and synergic effect with aspirin on human platelet in vitro.

Inhibitory Actions of Steppogenin on Platelet Activity Through Regulation of Glycoprotein IIb/IIIa and Ca2+ Mobilization (Glycoportein IIb/IIIa와 칼슘동원의 조절을 통한 Steppogenin의 혈소판활성 억제효과)

  • Shin, Jung-Hae;Ha, Ju-Yeon;Kwon, Hyuk-Woo
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.2
    • /
    • pp.100-106
    • /
    • 2020
  • The extract of Cudrania tricuspidata is used in ethnomedicine throughout Eastern Asia in China, Korea and Japan. In Korean traditional medicine, Cudrania tricuspidata has been used to treat eczema, mumps, tuberculosis, contusions, insomnia and acute arthritis. In addition, it has been reported that root extract of Cudrania tricuspidata has anti-platelet effects. Therefore, we investigated which compound in Cudrania tricuspidata has inhibitory effect on platelet aggregation. In this study, we tried to explain the inhibitory mechanism of steppogenin from Cudrania tricuspidata on human platelet aggregation. Collagen-induced human platelet aggregation and [Ca2+]i mobilization were dose-dependently inhibited by steppogenin and we determined the inhibition by steppogenin is due to the down regulation of extracellular-signal-regulated kinase(ERK) and inositol-1,4,5-triphosphate receptor type I(IP3RI) phosphorylation. In addition, steppogenin inhibited collagen-induced fibronectin adhesion to αIIb/β3 and thromboxane A2 generation. Thus, in the present study, steppogenin showed an inhibitory effect on human platelet aggregation, suggesting its potential use for preventing platelet-induced cardiovascular disease.