• Title/Summary/Keyword: inhibition against platelet aggregation

Search Result 38, Processing Time 0.019 seconds

Anti-Platelet Aggregation Effect of Extract from Gamisopunghwalheol-tang in Vitro (가미소풍활혈탕의 혈소판 응집억제 작용에 대한 in vitro 연구)

  • Lee, Hae-Yong;Min, Kyoung-Yoon;Kim, Seul-Ji;Park, Youn-Ju;Yang, Ga-Eun;Lee, Mi-Jung;Lew, Jae-Whan;Lee, Beom-Joon;Cho, In-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.980-985
    • /
    • 2009
  • The study was designed to test anti-platelet effect and find out anti-platelet mechanism of extract from Gamisopunghwalheol-tang in vitro. The extract was investigated for the inhibition against the aggregation of human platelet suspensions induced from collagen by aggregometer. And also the extract was investigated for the inhibition against the aggregation of human platelet suspensions who is taking aspirin or clopidogrel induced from collagen by aggregometer. In collagen-induced platelet aggregation test, the extract significantly inhibited collagen-induced platelet aggregation in a concentration-dependent manner(p<0.05). The extract significantly inhibited collagen-induced platelet aggregation of human platelet who is taking aspirin or clopidogrel ing 0 mg/ml concentration(p<0.05). And the extract inhibited more ingpatients who is taking aspirin. These results show that the extract from Gamisopunghwalheol-tang has anti-platelet aggregation effect.

Anticoagulant Properties of the Active Compound Derived from Cinnamomum cassia Bark

  • Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.218-222
    • /
    • 2007
  • The anticoagulant properties of Cinnamomum cassia bark-derived materials were evaluated against platelet aggregation induced by arachidonic acid (AA), collagen, platelet activating factor (PAF), or thrombin, and these effects were then compared to those of three commercially available compounds (cinnamic acid, cinnamyl alcohol, and aspirin). The active constituent obtained from C. cassia barks was isolated by silica gel column chromatography and high pressure liquid chromatography (HPLC), and was characterized as trans-cinnamaldehyde by MS, $^1H-NMR$, $^{13}C-NMR$, and IR spectroscopy. With regard to 50% inhibitory concentration ($IC_{50}$) values, cinnamaldehyde was found to effectively inhibit platelet aggregation induced by AA ($IC_{50},\;43.2\;{\mu}M$) and collagen ($IC_{50},\;3.1\;{\mu}M$). By way of comparison, cinnamaldehyde proved to be a significantly more potent platelet inhibitor against platelet aggregation induced by collagen than aspirin. The effect exerted by cinnamaldehyde against platelet aggregation induced by AA was 1.2 times less than that of aspirin. These results indicate that cinnamaldehyde may prove useful as a lead compound for the inhibition of platelet aggregation induced by AA and collagen.

Study on Inhibition of Platelet Aggregation of Bioactive Constituents from Paeonia lactiflora (작약의 혈소판 응집억제작용에 관한 연구)

  • 박관혁;서범석;손동주;박영현;장성근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.357-360
    • /
    • 2003
  • Methanol extracts from Paeonia lactiflora showed a strong inhibition against platelet aggregation on platelet activation test. Therefore, the bioactive constituents from Paeonia lactiflora were prepared using chromatography methods and were analyzed by NMR and reference data. Compound 1b was confirmed a same structure with henzoyloxypaeoniflorin, compound 2e was a same structure with paeoniflorin; main product of Paeonia lactiflora. Analytical data of compound 3a were not consistent with any known paeoniflorin soucture, but showed the souctural similarity with it. And also the aggregation inhibition activity of compound 3a showed a strong inhibition($\geq$ 90%) induced by collagen. Therefore it suggested that the structure of compound 3a may be the similar structure of benzoyloxypaeoflorin with a functional group in place of benzoyl group and/or a different functional group in stead of Rl. We suggested that benzoyl group of benzoyloxypaeoniflorin substitued instead of 5-carbon OH group on glycoside moiety paeoniflorin played role of the metabolite in case of a platelet aggregation inhibition activity. Paeoniflorin showed more strong inhibition by thrombin than collagen. Therefore, it may be destructed a calcium metabolite as a forming $Ca^2+$ chelate. Compound 3a may be that other functional group instead of OH group of 5-carbon on glycoside moiety of paeoniflorin and/or OH group of benzoyl moiety of paeoniflorin played role of the metabolite in a platelet aggregation inhibition.

  • PDF

Anti-Platelet Aggregating Effect of Solvent Extracts from Korean Soybean Varieties and Isoflavone Derivatives (품종별 국산콩 추출물 및 Isoflavone 유도체의 혈소판 응집억제작용)

  • Jang, Mi-Jeong;Kang, Myung-Hwa;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.9
    • /
    • pp.1320-1324
    • /
    • 2005
  • Soybean (Glycine max L.) is an increasingly important food source and functional food. Platelet aggregation plays an important role in thrombogenesis and atherosclerosis. Here, we studied the anti-platelet aggregating effects of solvent extracts from Korean soybean varieties and isoflauone derivatives. Nine Korean soybean varieties were extracted by solvents (methanol and buthanol and their extracts was investigated for the inhibition against tile aggregation of washed rabbit platelets induced by collagen or thrombin. Maximal inhibition of buthanol extracts against platelet aggregation induced by collagen was $95\%$ in Black-kong and Jinpum - kong. The potency of their inhibition was in the following order : Black > Jinpum > Bokwang > Hwangkum > Pureun > Malli > Danbaek > Danyeob > Jangsu - kong. The Black - kong only seemed to produce the maximal inhibition against platelet aggregation induced by thrombin. Total isoflavone content measured was Jinpum-kong ($1347.8{\mu}g/g$) and Black-kong ($918.7{\mu}g/g$). Maximal inhibition of isoflavone derivatives against platelet aggregation induced by collagen was $97\%$ in genistein. The potency of their inhibition was in the following order: genistein>daidzein>genistin. The isoflavone derivatives did not affect the platelet aggregation induced by thrombin. However, Black-kong cortex seemed to Produce the optimal inhibition against platelet aggregation induced by collagen. These results suggest that Black-kong and Jinpum-kong may be a good source for antiplatelet agents, and their antiplatelet effect be related to tile content and the chemical structure with the number of -OH group and the attached glycoside in the isoflavone derivative.

Anti-thrombic Properties of the Oriental Herbal Medicine, Daejowhan

  • Chang Gyu-Tae;Kim Jang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1391-1398
    • /
    • 2005
  • The anti-thrombic properties of the oriental herbal medicine Daejowhan(DJW, 大造丸) which consists of 11 kinds of herbs (indicated as ratio) of Rehmanniae Radix 24%, Hominis Placenta 5%, Testudinis Carapax 9%, Eucommiae Cortex 9%, Asparagi Radix 9%, Phellodendri Cortex 9%, Achyranthis Radix 7%, Liriopis Tuber 7%, Angelicae Sinensis Radix 7%, Ginseng Radix 5% and Schizandrae Fructus 3% were investigated. The water extracts from DJW inhibited Platelet-activating factor(PAF) induced platelet aggregation. DJW was extracted with methanol and further fractionated by ethylacetate. A 70% methanol extract showed a strong inhibition against PAF-induced aggregation in vitro and in vivo assays. The ethylacetate soluble fraction was shown to have inhibitory effect on PAF-induced platelet aggregation in vitro assay. The ethylacetate soluble fraction specially protected against the lethality of PAF, while verapamil did not afford any protection. These results indicate that the water extracts and alcoholic-fractions inhibit the action of PAF in vivo by an antagonistic effect on PAF, so that it may be useful in treating disorders caused by PAF, such as acute allergy, inflammation, asthma, gastrointestinal ulceration, toxic shock and so forth. DJW was investigated regarding its assumed anti-thrombic action on human platelets which was deduced from its ability to suppress Arachidonic acid(AA)-induced aggregation, exocytosis of ATP, and inhibition of Cyclooxygenase(COX) and Thromboxane synthase(TXS) activity. The latter two effects were estimated from the generation of Prostaglandin $E_2(PGE_2)$ and Thromboxane $A_2(TXA_2)$ respectively. Exogenously applied AA ($100{\mu}mol/{\ell}$) provoked a $89\%$ aggregation of platelets, the release of 14 pmol ATP, and the formation of either 225 pg $TXA_2$ or 45 pg $PGE_2$, each parameter being related to 106 platelets. An application of DJW 5 min before AA dose-dependently diminished aggregation, ATP-release and the synthesis of $TXA_2$ and $PGE_2$ with $IC_{50}$ values of 74, 108, 65, $72{\mu}g/m{\ell}$, respectively. The similarity of the $IC_{50}$ values suggest an inhibition of COX by DJW as primary target, thus suppressing the generation of $TXA_2$ which induces aggregation of platelets and exocytosis of ATP by its binding on $TXA_2$-receptors.

Higenamine Reduced Mortalities in the Mouse Models of Thrombosis and Endotoxic Shock (마우스의 혈전증 및 내독소 쇼크 모델에 있어서 Higenamine에 의한 사망률 저하효과)

  • YunChoi, Hye-Sook;Kim, Moon-Hee
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.191-196
    • /
    • 1994
  • Higenamine is a tetrahydroisoquinoline alkaloid which was isolated as a cardiotonic principle from Aconiti tuber. 1.v. injection of higenamine was reported to increase the cardiac output and heart rate and to decrease the blood pressure and the systemic vascular resistance presumably by stimulating the adrenergic ${\beta}-receptors$. The anti-platelet and anti-thrombotic effects of higenamine were investigated in this paper. Higenamine(0.5 mg/ml) showed mild inhibitory effect against collagen induced platelet aggregation in vitro and the inhibito교 effect was increased with the pre-incubation$(5{\sim}30\;min)$ of platelet rich plasma(PRP) with higenamine. With the 30 min incubation, the platelet aggregation was almost completely inhibited. And the oral administration of higenamine$(50{\sim}200\;mg/kg)$ enhanced the survival in the mouse model of thrombosis and that of endotoxic shock. The anti-thrombotic and anti-septic effects of higenamine thus appear to be due to the ${\beta}-agonistic$ and the anti-platelet effects of this compound.

  • PDF

Anti-platelet Aggregation Effect of Cheongpyesagan-tang In Vitro (청폐사간탕(淸肺瀉肝湯)의 혈소판 응집억제 작용에 대한 in vitro 연구)

  • Park, Young-Ju;Kim, Seul-Ji;Yang, Ga-Eun;Lee, Mi-Jung;Lee, Ji-Sook;Kang, Deok-Hui;Kim, Young-Chan;Lee, Woo-Kyung;Ryu, Jae-Hwan
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.714-721
    • /
    • 2010
  • Objective : The study was designed to test the anti-platelet effect of the extract Cheongpyesagan-tang and compare it with aspirin in vitro. Methods : The extract from Cheongpyesagan-tang was made by the pharmacy department of Kyung Hee Oriental Medical Hospital. The extract was investigated for inhibition against the collagen induced aggregation of human platelet suspensions on aggregometry. Aspirin and aspirin-Cheongpyesagan-tang were investigated together. Results : 1. In collagen induced human platelet aggregation test, the extract from Cheongpyesagan-tang significantly inhibited in concentration 30mg/ml (p<0.05), 40mg/ml, 50mg/ml (p<0.001) and the effect depended on concentration over 20mg/ml. 2. Aspirin and aspirin-Cheongpyesagan-tang inhibited collagen induced human platelet aggregation significantly (p<0.001). Aspirin-extract of Cheongpyesagan-tang inhibition rate was higher than aspirin only (p<0.05). Conclusions : The extract of Cheongpyesagan-tang has anti-platelet aggregation and synergic effect with aspirin on human platelet in vitro.

The Antithrombotic Effects of Green Tea Catechins (녹차 카테킨류의 항혈전 효과)

  • 윤여표;강원식;이미애
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.2
    • /
    • pp.77-82
    • /
    • 1996
  • Green tea catechins(GTC) were studied for its inhibitory effect on human platelet aggregation in vitro, for its antithrombotic effect in mice in viro, and bleeding and clotting time in rats. The catechins were isolated and purified from green tea, which were composed of (-)-epigallocatechin gallate, (-)-epigallocatechin, (-)epicatechin gallate and (-)-epicatechin, GTC produced a potent inhibition of human platelet aggregation in a dose-dependent manner against the stimulants such as ADP, collagen, epinephrine and ristocetin n vitro. GTC also prevented death due to the formation of pulmonary thrombosis by platelet aggregates in mice in a dose-de-pendent manner in viro. GTC increased the bleeding time, whole blood clotting time and plasma clotting time in rats, too. These results suggest that GTC is a promising antithrombotic agent.

  • PDF

Anti-platelet Effects of Artemisinin through Regulation of Cyclic Nucleotide on Collagen-induced human Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.30 no.3
    • /
    • pp.162-168
    • /
    • 2024
  • The discovery of a novel substance capable of regulating or suppressing platelet aggregation holds significant promise for the prevention and treatment of cardiovascular diseases. Artemisinin, a compound derived from plants like Artemisia or Scopolia, has demonstrated potential across various fields, including anticancer and Alzheimer's disease research. However, its specific role and mechanisms in influencing platelet activation and thrombus formation remain incompletely understood. This study delves into elucidating how artemisinin affects platelet activation and thrombus formation. Results revealed a significant increase in cAMP production with varying doses of artemisinin, alongside notable phosphorylation of VASP and IP3R-both substrates for cAMP-dependent kinase. This phosphorylation led to the inhibition of Ca2+ mobilization from the dense tubular system, consequently reducing platelet activity via αIIb/β3 inactivation and suppressing fibrinogen binding. Furthermore, artemisinin exhibited inhibition of thrombin-induced thrombus formation. These findings suggest that artemisinin holds promise as an effective prophylactic and therapeutic agent against cardiovascular diseases, specifically targeting abnormal platelet activation and thrombus formation.

Anticardiovascular Diseases Effects of Fermented Garlic and Fermented Chitosan

  • Kim, Hyun-Kyoung;Lee, Jeong-Hun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.109-115
    • /
    • 2018
  • Garlic is a medicinal plant used throughout the world for its anti-inflammatory, antioxidant, and antiplatelet activities. Chitosan is a natural polysaccharide obtained from chitin, and derivatives of chitosan have been shown to inhibit platelet aggregation and adhesion. We hypothesized that fermented preparations of these products may possess stronger antiplatelet effects than the non-fermented forms owing to the increased bioavailability of the bioactive compounds produced during fermentation. Therefore, we compared these compounds via in vitro and ex vivo platelet aggregation assays by using standard light transmission aggregometry and ex vivo granule secretions from rat platelets. We found that fermented preparations exerted more potent and significant inhibition of platelet aggregation both in vitro and ex vivo. Likewise, ATP release from dense granules of platelets was also significantly inhibited in fermented preparation-treated rat platelets compared to that in non-fermented preparation-treated ones. We concluded that fermented preparations exerted more potent effects on platelet function both in vitro and ex vivo, possibly as a result of the increased bioavailability of active compounds produced during fermentation. We therefore suggest that fermented products may be potent therapeutics against platelet-related CVDs and can be used as antiplatelet and antithrombotic agents.