• Title/Summary/Keyword: infrared thermal measurement

Search Result 138, Processing Time 0.032 seconds

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구)

  • Kim, Jung-Sub;Ha, Seung-Kyu;Yang, Chang-Jae;Lee, Jae-Yel;Park, Se-Hun;Choi, Won-Jun;Yoon, Eui-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2010
  • We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

An Experimental Study on the Applicability of Plate Thermometer in Steady and Unsteady-State Fire Conditions (정상 및 비정상상태의 화재조건에서 판형 열유속계의 적용성에 관한 실험적 연구)

  • Yun, Hong-Seok;Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.34-41
    • /
    • 2015
  • The applicability of plate thermometer (PT), which feature simple installation and low cost, was experimentally examined in steady and unsteady-state fire conditions. An infrared radiation heater and a square burner with C3H8 as fuel were used as heat sources. The relative measurement accuracy of the PT was evaluated by comparing measurements made using a Gardon-type heat flux meter. From a practical point of view and in terms of measurement accuracy, the optimal size and thickness of the PT in steady and unsteady-state fire conditions were 100 mm and 0.6 mm, respectively. These results can be explained by the conductive heat losses and thermal inertia of the PT for different sizes and thicknesses. It can be also concluded that measurements of heat flux using the PT in conditions of faster fire growth rate than slow require considerable attention.

Characterization of Porcine Tissue Perforation Using High-Power Near-Infrared Laser at 808-nm Wavelength (808 nm 파장의 고출력 근적외선 레이저 조사 시 돼지 조직의 천공 특성 연구)

  • Kim, Seongjun;Cho, Jiyong;Choi, Jaesoon;Lee, Don Haeng;Kim, Jung Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.807-814
    • /
    • 2013
  • A fundamental study on laser-tissue interaction was conducted with the aim of developing a therapeutic medical device that can remove lesions on the intestinal wall by irradiating a high-power 808-nm infrared laser light incorporated in an endoscopic system. The perforation depth was linearly increased in the range of 1~4 mm in proportional to laser output (3~12 W) and irradiation time (5~20 s). We demonstrated that the perforation depth during laser irradiation was varied according to the tissue property of each extracted porcine organ. The measurement of the temperature distribution suggests that the energy is localized in the irradiation spot and transferred to deep tissue, which protects the surrounding tissue from thermal injury. These results can be used to set the driving parameters for a laser incision technique as an alternative to conventional surgical interventions.

Studies of Annealing Effect on the Properties of the Rigid Polyurethane (열처리에 따른 경질 폴리우레탄의 물성 변화 연구)

  • Kang S. J.;Jung H. C.;Kim W. N.;Lee Y. B.;Choe K. H.;Hong S. H.;Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.18-24
    • /
    • 1998
  • Polyurethane (PU) synthesized from 4,4'-diphenylmethane diisocyanate having high functionality (f=2.9) and polyester polyol have been investigated by differential scanning calorimeter (DSC), dynamic mechanical thermal analyzer (DMTA), and Fourier transform infrared spectroscope (FT-IR). From the DSC measurement of polyurethane, a single transition temperature ($T_g$) was observed. This result indicates that polyurethanes synthesized in this work have homogeneous network structure due to high functionality of diisocyanate. It was also found that the $T_g$ of polyurethane was increased as hard segment content was increased. The results from DMTA measurement are consistent with DSC results. In order to investigate the effect of thermal annealing on the $T_g$ of polyurethane, the samples were annealed at various annealing conditions. $T_gs$ of polyurethanes were found to increased with annealing temperature. From swelling experiment and FT-IR studies, it was found that the $T_g$ was increased as crosslinking density of polyurethane was increased.

  • PDF

Physicochemical Characteristics of Silk Fibroin Degummed by Protease in Bacillus licheniformis I. Physicochemical Characteristics of Degummed Silk Fiber (Bacillus licheniformis 단백질 분해 효소에 의한 정연 견사의 특성 I. 정연 견사의 이화학적 특성)

  • 김영대;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.2
    • /
    • pp.41-51
    • /
    • 1992
  • In this thesis, both soap and enzymatic degumming method were adopted and the optimum degumming conditions were obtained. Difference between the two degumming methods in silk fiber state was investigated and analyzed on the basis of the results of physical testings, polarizing microscopy, scanning electron microscopy, viscosity measurement, (${\alpha}$$\varepsilon$) amino group contents measurement, birefringence measurement, amino acid analysis, thermal analysis, infrared spectroscopy and x-ray diffraction analysis. The results obtained were summarized as follows; Physical test results of the degummed silk fiber showed that the tenacity and the elongation of enzymatic degummed silk fiber were lower than those of soap degummed fiber. But SEM observation and amino acid analysis showed almost the same tendency in the two degumming methods. The viscosity of enzymatic degummed silk fiber was lower than that of soap degummed fiber, but (${\alpha}$$\varepsilon$) amino group contents was higher in the enzymatic degummed fiber. It can be suggested that the enzymatic degummed silk fibroin was more degraded than the soap degummed fibroin. The birefringence, endothermic temperature of DSC spectrum, IR crystallinity and X-ray lateral order factor of enzymatic degummed silk fiber were higher than those of soap degummed fiber. It seems that the enzymatic degummed silk fiber has the higher crystallinity than that of soap degummed one according to the above results. However, it can be inferred that these differences between soap and enzymatic degummed fiber would be lessened if pretreatment and aftertreatment were included in the enzymatic degumming process.

  • PDF

Preparation and Characterization of NiZn-Ferrite Nanofibers Fabricated by Electrospinning Process (전기방사법에 의한 NiZn 페라이트 나노섬유의 제조 및 특성 연구)

  • Joo, Yong-Hui;Nam, Joong-Hee;Cho, Jeong-Ho;Chun, Myoung-Pyo;Kim, Byung-Ik;Ko, Tae-Gyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • Electrospinning process is the useful and unique method to produce nanofibers from metal precursor and polymer solution by controlled viscosity. In this study, the NiZn ferrite nanofibers were prepared by electrospinning with a aqueous metal salts/polymer solution that contained polyvinyl pyrrolidone and Fe (III) chloride, Ni (II) acetate tetrahydrate and zinc acetate dihydrate in N,N-dimethylformamide. The applied electric field and spurting rate for spinning conditions were 10 kV, 2 ml/h, respectively. The obtained fibers were treated at $250^{\circ}C$ for 1 h to remove the polymer. Finally, the NiZn ferrite fibers were calcined at $600^{\circ}C$ for 3 h and annealed at $900{\sim}1200^{\circ}C$ in air. By tuning the viscosity of batch solution before electrospinning, we were able to control the microstructure of NiZn ferrite fiber in the range of $150{\sim}500\;nm$ at 770 cP. The primary particle size in $600^{\circ}C$ calcined ferrite fiber was about 10 nm. The properties of those NiZn ferrite fibers were determined from X-ray diffraction analysis, electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, thermal analysis, and magnetic measurement.

Preparation and Characterization of Functional Microcapsules Containing Suspensions of Conducting Materials (전도성 물질 서스펜션을 함유한 마이크로캡슐)

  • Ihm, DaeWoo;Kwon, Won Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Microcapsules containing the suspension of conducting materials such as carbon nanotube (CNT) or polyaniline (PANI) were prepared by in-situ polymerization of melamine and formaldehyde. Stable microcapsules were prepared and the mean diameter of the observed microcapsules was in the range of $10-20{\mu}m$. The surface morphology and chemical structure of microcapsules were investigated using optical microscope (OM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The thermal properties of samples were investigated by thermogravimetric analysis (TGA). The conductivity of ruptured microcapsule containing the suspension of CNTs or PANIs in tetrachloroethylene and Isopar-G was measured. As the amount of CNTs and PANIs in the core of microcapsules increased, the measured current increased. Conductivity measurement results suggest that poly (melamine-formaldehyde) based core-shell microcapsules could be applied to self-healing electronic materials systems, where CNTs or PANIs bridge a broken circuit upon release.

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

Selective Oxidation of Acrolein over Cupric Salt of 12-Molybdophosphoric Acid (12-몰리브도 인산 동염 촉매상에서 아크롤레인의 선택 산화반응)

  • Kim, Kyung-Hoon;Na, Suk-Eun;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.721-730
    • /
    • 1993
  • Various catalysts of $Cu_xH_3-{_{2x}}PMo_{12}O_{40}{\cdot}_nH_2O$ with different x-values have been prepared and characterized by thermal analysis, X-ray powder diffraction, infrared spectroscopy, BET surface-area measurement, electron microscopy, and temperature programmed desorption of ammonia. The properties of these catalysts in acrolein oxidation have been investigated in a continuous-flow fixed-bed reactor. The catalysts lost their water of crystallization at about $200^{\circ}C$ and their constitutional water between 300 and $400^{\circ}C$. The Keggin structure of the catalysts was identified by infrared spectroscopy. The decomposition of Keggin anion, $(PMo_{12}O_{40})^{3-}$, was increased with the increase of substituted copper content and identifiable $MoO_3$ and $P_2O_5$ as decomposition products were observed. The conversion of acrolein decreased with the increase of x probably due to the decrease of specific surface area and of total amount of acid sites. But specific reaction rate and selectivity to acrylic acid were maximized at x=1.0, and it showed specific acid site distributions.

  • PDF

Design for Access Control System based on Voice Recognition for Infectious Disease Prevention (전염성 확산 차단을 위한 음성인식 기반의 출입통제시스템 설계)

  • Mun, Hyung-Jin;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.19-24
    • /
    • 2020
  • WHO declared a global pandemic on March 11th for Corona 19. However, there is a situation where you have to go to building for face-to-face education or seminars for economic and social activities. The first check method of COVID-19 infection is to measure body temperature, so the primary entrance and exit is blocked for near-field body temperature measurement. However, since it is troublesome to check directly, thermal camera is installed at the entrance of the building, and body temperature is measured indirectly using the infrared camera to control access. In case of middle and high schools, universities, and lifelong education center, we need a system that is possible to interoperate with attendance checks and automatically recognizes whether to wear masks and can authenticate students. We proposed the system that is to confirm whether to wear a mask with a camera that is embedded in a smart mirror, and that authenticates the user through voice recognition of the user who wants to enter the building by using voice recognition technology and determines whether to enter them or not. The proposed system can check attendance if it is linked with near-field temperature measurement and attendance check APP of student's smart phone.