• 제목/요약/키워드: inflammatory cell

검색결과 3,685건 처리시간 0.029초

Natural Origin Polymers: Applications as Wound Care Materials (자연 고분자 : 상처 치료 재료로 활용)

  • Karadeniz, Fatih;Sung, Hye Kyeong;Kim, Han Seong
    • Journal of Life Science
    • /
    • 제29권3호
    • /
    • pp.382-393
    • /
    • 2019
  • Wound care is a health industry concern affecting millions worldwide. Recent increase in metabolic disorders such as diabetes comes with elevated risk of wound-based complications. Treatment and management of wounds are difficult practices due to complexity of the wound healing process. Conventional wound dressings and treatment applications only provide limited benefits which are mainly aimed to keep wound protected from external factors. To improve wound care, recent developments make biopolymers to be of high interest and importance to researchers and medical practitioners. Biopolymers are polymers or natural origin produced by living organisms. They are credited to be highly biocompatible and biodegradable. Currently, studies reported biopolymers to exhibit various health beneficial properties such as antimicrobial, anti-inflammatory, hemostatic, cell proliferative and angiogenic activities which are crucial for effective wound management. Several biopolymers, namely chitosan, cellulose, collagen, hyaluronic acid and alginic acid have been already investigated and applied as wound dressing agents. Different derivatives of biopolymers have also been developed by cross-linking with other molecules, grafting with other polymers, and loading with bioactive agents or drugs which showed promising results towards wound healing without any undesired outcome such as scarring and physiological abnormalities. In this review, current applications of common biopolymers in wound treatment industry are highlighted to be a guide for further applications and studies.

Physiological Activities of Bioconversion Products Using Bacillus Subtillis KJ-3 and Their Mixtures (Bacillus Subtilis KJ-3를 이용한 생물전환물 및 그 혼합물의 생리활성)

  • Lee, Jin Young;Dong, Jaekyung;Chung, Yuseong;Kim, Mi-Ryung;Kang, Jae Seon
    • Journal of Life Science
    • /
    • 제29권10호
    • /
    • pp.1086-1095
    • /
    • 2019
  • This research was performed to develop a new material consisting of a mixture of Red Allium cepa (RA) Cucurbita moschata duch (CM), and Angelica gigas Nakai (AG). RA and CM have low storage stability because of their high moisture content. Therefore, their major components were extracted and used for the research after a content analysis. In order to overcome these limitations, the quercetin from RA, ${\beta}-carotene$ from CM, and decursin/decursinol angelate (D/DA) from AG were separately extracted, and the biochemical activity of each extract and mixture was compared. RA was bioconverted by the Bacillus subtillis KJ-3 (BS3) after ethanol extraction. After bioconversion, the quercetin content of RA was increased by 128.9%. ${\beta}-carotene$ was detected in the CM ethanol extract and its content was very low concentrations at 0.2 mg/g. The AG ethanol extract (1 mg) contained 0.4146 mg and 0.3659 mg of D/DA, respectively. The purity of the D/DA was found to be about 78%. The flavonoid and polyphenol content of each extract and their mixtures (mixture 1 (RA:CM:AG = 5:2:3), mixture 2 (RA:CM: AG = 3:5:2), and mixture 3 (RA:CM:AG = 3:2:5)) were measured. In addition, the cell survival rate, anti-inflammatory activity, and antioxidant ability were also evaluated. In all the results, the antioxidant activity of mixture 3 was most effective. Therefore, these findings provide basic data for future food development using a 3:2:5 mixture of RA, CM, and AG.

Ahnak-knockout mice show susceptibility to Bartonella henselae infection because of CD4+ T cell inactivation and decreased cytokine secretion

  • Choi, Eun Wha;Lee, Hee Woo;Lee, Jun Sik;Kim, Il Yong;Shin, Jae Hoon;Seong, Je Kyung
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.289-294
    • /
    • 2019
  • The present study evaluated the role of AHNAK in Bartonella henselae infection. Mice were intraperitoneally inoculated with $2{\times}10^8$ colony-forming units of B. henselae Houston-1 on day 0 and subsequently on day 10. Blood and tissue samples of the mice were collected 8 days after the final B. henselae injection. B. henselae infection in the liver of Ahnak-knockout and wild-type mice was confirmed by performing polymerase chain reaction, with Bartonella adhesion A as a marker. The proportion of B. henselae-infected cells increased in the liver of the Ahnak-knockout mice. Granulomatous lesions, inflammatory cytokine levels, and liver enzyme levels were also higher in the liver of the Ahnak-knockout mice than in the liver of the wild-type mice, indicating that Ahnak deletion accelerated B. henselae infection. The proportion of CD4+interferon-${\gamma}$ ($IFN-{\gamma}^+$) and $CD4^+$ interleukin $(IL)-4^+$ cells was significantly lower in the B. henselae-infected Ahnak-knockout mice than in the B. henselae-infected wild-type mice. In vitro stimulation with B. henselae significantly increased $IFN-{\gamma}$ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected wild-type mice, but did not increase $IFN-{\gamma}$ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected Ahnak-KO mice. In contrast, $IL-1{\alpha}$, $IL-1{\beta}$, IL-6, IL-10, RANTES, and tumor necrosis $factor-{\alpha}$ secretion was significantly elevated in the splenocytes obtained from both B. henselae-infected wild-type and Ahnak-knockout mice. These results indicate that Ahnak deletion promotes B. henselae infection. Impaired $IFN-{\gamma}$ and IL-4 secretion in the Ahnak-knockout mice suggests the impairment of Th1 and Th2 immunity in these mice.

The co-injection of antioxidants with foot-and-mouth disease vaccination altered growth performance and blood parameters of finishing Holstein steers

  • Seo, Jakyeom;Song, Minho;Jo, Namchul;Kim, Woonsu;Jeong, Sinyong;Kim, Jongnam;Lee, Seyoung;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권6호
    • /
    • pp.792-799
    • /
    • 2019
  • Objective: This study was conducted to evaluate whether the co-injection of antioxidants together with foot-and-mouth disease (FMD) vaccination has the potential to attenuate the negative effects caused by vaccination in Holstein finishing steers. Methods: A total of 36 finishing Holstein steers (body weight [BW]: $608{\pm}45.6kg$, 17 months old) were randomly allocated to one of three treatments: i) control (CON, only FMD vaccination without any co-injection), ii) co-injection of commercial non-steroidal anti-inflammatory drugs (NSAID) with FMD vaccination at a ratio of 10:1 (NSAID vol/FMD vaccine vol) as a positive control (PCON), iii) co-injection of commercial mixture of vitamin E and selenium with FMD vaccination (VITESEL) (1 mL of FMD vaccine+1 mL of antioxidants per 90 kg of BW). Changes in growth performance and blood parameters because of treatments were determined. Results: No significant difference in BW, average daily gain, and dry matter intake of the steers was observed among the treatments. The FMD vaccination significantly increased white blood cells (WBC), neutrophils, platelets, and mean platelet volume (p<0.01) in blood analysis. The count of lymphocyte tended to increase after vaccination (p = 0.08). In blood analysis, steers in VITESEL tended to have higher numbers of WBC, neutrophils, and platelets compared to that of other treatments (p = 0.09, 0.06, and 0.09, respectively). Eosinophils in VITESEL were higher than those in PCON (p<0.01). Among blood metabolites, blood urea nitrogen and aspartate transaminase were significantly increased, but cholesterol, alanine transferase, inorganic phosphorus, Mg, and albumin were decreased after FMD vaccination (p<0.01). Conclusion: The use of antioxidants in FMD vaccination did not attenuate growth disturbance because of FMD vaccination. The metabolic changes induced by vaccination were not controlled by the administration of antioxidants. The protective function of antioxidants was effective mainly on the cell counts of leukocytes.

Antiangiogenic activity of non-aqueous fraction from Sparassis crispa extract in human umbilical vein endothelial cells (혈관내피세포에서 꽃송이버섯(Sparassis crispa) 소수성 추출물의 항혈관신생 활성)

  • Han, Jang Mi;Gong, So Youn;Sohng, Jae Kyung;Kang, Yue Jai;Jung, Hye Jin
    • Korean Journal of Food Science and Technology
    • /
    • 제51권2호
    • /
    • pp.141-146
    • /
    • 2019
  • Sparassis crispa is an edible mushroom that is distributed in Korea, Japan, Europe, and North America. It exerts various biological activities such as immunopotentiation, anti-diabetic, anti-cancer, and anti-inflammatory effects. Recently, we separated the health functional non-aqueous fraction from the chloroform extract of S. crispa (SCF4). In this study, we evaluated the antiangiogenic activity of SCF4 in human umbilical vein endothelial cells (HUVECs). SCF4 effectively inhibited vascular endothelial growth factor (VEGF)-induced cell growth at concentrations ($5-25{\mu}g/mL$) showing no cytotoxic effects. SCF4 inhibited VEGF-induced invasiveness and tube formation ability, which are in vitro angiogenic features of HUVECs, in a dose-dependent manner. In addition, SCF4 markedly suppressed in vivo angiogenesis of chorioallantoic membrane from growing chick embryos without cytotoxicity. Furthermore, SCF4 downregulated the phosphorylation of VEGFR2, AKT, and ERK1/2, which are major angiogenic signal mediators. These results suggest that SCF4 inhibited angiogenesis by suppressing the VEGFR2 signaling pathways without cytotoxicity.

Effect of Lonicerae Japonicae Flos on Bone Density in Ovariectomized Rat Model of Osteoporosis (난소 적출 흰쥐 골다공증 모델에서 금은화(金銀花)가 골밀도 증가에 미치는 효과)

  • Lee, SungYub;Kim, Minsun;Hong, SooYeon;Kim, Jae-Hyun;Kim, Hongsik;Lee, Chungho;Jung, Hyuk-Sang;Sohn, Youngjoo
    • The Korea Journal of Herbology
    • /
    • 제36권5호
    • /
    • pp.81-91
    • /
    • 2021
  • Objectives : Osteoporosis is a systemic skeletal disease that decreases bone density and increases the risk of fractures. Bisphosphonates and SERMs are mainly used to treat osteoporosis, but, long-term use increases the risk of side effects such as jaw bone necrosis and breast cancer. Therefore, it is necessary to develop a therapeutic agent for a natural product with few side effects. Water extract of Lonicerae Japonicae Flos (wLF) was mainly found to have anti-cancer and anti-inflammatory effects. However, the effect of wLF on osteoporosis has not been elucidated. Therefore, this experiment investigated the effect of wLF on osteoclasts, osteoblasts and osteoporosis models. Methods : In order to study the effect of wLF on osteoporosis, the OVX-induced rat model was used for in vivo study. After 8 weeks, we measured body weight, uterine weight, liver weight, femur weight, bone density, trabecular area and tibia ash weight. To determine the effect of wLF on osteoclast differentiation, we measured the number of TRAP-positive cells and TRAP activity. To examine the effect of wLF on the expression of osteoblast-related genes, we measured the mRNA expression of alkaline phosphatase (ALP, Alpl) and osteocalcin (OCN, Bglap2). Results : In vivo experiment, wLF inhibited the reduction of femur weight, trabecular area, bone density and tibia ash weight. In vitro experiment, wLF had no significant effect on osteoclast differentiation. However, wLF increased the mRNA expression of Alpl and Bglap2 in MC3T3-E1 cell. Conclusions : This result suggested that wLF may be used for the treatment and prevention of postmenopausal osteoporosis.

Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway

  • Lee, Yun Hee;Choi, Hui-Ji;Kim, Ji Yea;Kim, Ji-Eun;Lee, Jee-Hyun;Cho, So-Hyun;Yun, Mi-Young;An, Sungkwan;Song, Gyu Yong;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.933-941
    • /
    • 2021
  • Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 ㎍/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3β, which activates the WNT/β-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of β-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/β-catenin pathway including WNT5A, β-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3β/β-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.

Anti-obesity Effect of the Flavonoid Rich Fraction from Mulberry Leaf Extract (뽕잎 추출물 기원 Flavonoid Rich Fraction의 항비만효과)

  • Go, Eun Ji;Ryu, Byung Ryeol;Yang, Su Jin;Baek, Jong Suep;Ryu, Su Ji;Kim, Hyun Bok;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • 제28권6호
    • /
    • pp.395-411
    • /
    • 2020
  • Background: This study investigated the anti-obesity effect of the flavonoid rich fraction (FRF) and its constituent, rutin obtained from the leaf of Morus alba L., on the lipid accumulation mechanism in 3T3-L1 adipocyte and C57BL/6 mouse models. Methods and Results: In Oil Red O staining, FRF (1,000 ㎍/㎖) treatments showed inhibition rate of 35.39% in lipid accumulation compared to that in the control. AdipoRedTM assay indicated that the triglyceride content in 3T3-L1 adipocytes treated with FRF (1,000 ㎍/㎖) was reduced to 23.22%, and free glycerol content was increased to 106.04% that of the control. FRF and its major constituent, rutin affected mRNA gene expression. Rutin contributed to the inhibition of Sterol regulatory element binding protein-1c (SREBP-1c) gene expression, and inhibited the transcription factors SREBP-1c, peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, the effect of FRF administration on obesity development in C57BL/6 mice fed high-fat diet (HFD) was investigated. FRF suppressed weight gain, and reduced liver triglyceride and leptin secretion. FRF exerted potential anti-inflammatory effects by improving insulin resistance and adiponectin levels, and could thus be used to help counteract obesity. The mRNA expressions of PPAR-γ, FAS, ACC, and CPT-1 were determined in liver tissue. Quantitative real-time PCR analysis was also performed to evaluate the expression of IL-1β, IL-6, and TNF-α in epididymal adipose tissue. Compared to the control group, mice fed the HFD showed the up-regulation in PPAR-γ, FAS, IL-6, and TNF-α genes, and down-regulation in CPT1 gene expression. FRF treatement markedly reduced the expression of PPAR-γ, FAS, IL-6, and TNF-α compared to those in HFD control, whereas increased the expression level of CPT1. Conclusions: These results suggest that the FRF and its major active constituent, rutin, can be used as effective anti-obesity agents.

Mechanisms of Resorcinol Antagonism of Benzo[a]pyrene-Induced Damage to Human Keratinocytes

  • Lee, Seung Eun;Kwon, Kitae;Oh, Sae Woong;Park, Se Jung;Yu, Eunbi;Kim, Hyeyoun;Yang, Seyoung;Park, Jung Yoen;Chung, Woo-Jae;Cho, Jae Youl;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.227-233
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and ubiquitous environmental toxin with known harmful effects to human health. Abnormal phenotypes of keratinocytes are closely associated with their exposure to B[a]P. Resorcinol is a component of argan oil with reported anticancer activities, but its mechanism of action and potential effect on B[a]P damage to the skin is unknown. In this study, we investigated the effects of resorcinol on B[a]P-induced abnormal keratinocyte biology and its mechanisms of action in human epidermal keratinocyte cell line HaCaT. Resorcinol suppressed aryl hydrocarbon receptor (AhR) activity as evidenced by the inhibition of B[a]P-induced xenobiotic response element (XRE)-reporter activation and cytochrome P450 1A1 (CYP1A1) expression. In addition, resorcinol attenuated B[a]P-induced nuclear translocation of AhR, and production of ROS and pro-inflammatory cytokines. We also found that resorcinol increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activity. Antioxidant response element (ARE)-reporter activity and expression of ARE-dependent genes NAD(P)H dehydrogenase [quinone] 1 (NQO1), heme oxygenase-1 (HO-1) were increased by resorcinol. Consistently, resorcinol treatment induced nuclear localization of Nrf2 as seen by Western analysis. Knockdown of Nrf2 attenuated the resorcinol effects on ARE signaling, but knockdown of AhR did not affect resorcinol activation of Nrf2. This suggests that activation of antioxidant activity by resorcinol is not mediated by AhR. These results indicate that resorcinol is protective against effects of B[a]P exposure. The mechanism of action of resorcinol is inhibition of AhR and activation of Nrf2-mediated antioxidant signaling. Our findings suggest that resorcinol may have potential as a protective agent against B[a]P-containing pollutants.

Regulation of the plasminogen activator activity and inflammatory environment via transforming growth factor-beta regulation of sperm in porcine uterine epithelial cells

  • Kim, Su-jin;Cheong, Hee-Tae;Park, Choon-keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • 제35권4호
    • /
    • pp.297-306
    • /
    • 2020
  • The aims of the present study were to confirm that regulation of the PA and environment via TGF-β regulation of sperm by Percoll-separated in porcine uterine epithelial cells. And, it was performed to identify the cytokines (TGF-β1, 2 and 3, TGF-β receptor1 and 2; interleukin, IL-6, IL-8) and PA-related genes (urokinase-PA, uPA; tissue-PA, tPA; PA inhibitor, PAI; uPA-receptor, uPAR) by spermatozoa. The experiment used porcine uterus epithelial cells (pUECs) and uterine tissue epithelial cells, Boar sperm were separated by discontinuous Percoll density gradient (45/90%), and tissues were co-incubated with spermatozoa, followed by real-time PCR. PA activity was measured of sperm by discontinuous Percoll density gradient (45/90%) for 24 hours. To measure viability and acrosome damage of sperm double stained propidium iodide (PI) and SYBR-14 or FITC-PNA were used. In results, binding ratio of Percoll-separated sperm was found no differences, but sperms isolated from 90% Percoll layer reduced PA activity (p < 0.05). when co-cultured sperm selected Percoll in porcine uterus tissues epithelial cells, 90% layer sperm increased TGF-β R1, contrastively tPA and PAI-1 in comparison with control (p < 0.05). 45% sperm was decreased the expression of uPA (p < 0.05). TGF-β decreased PA activity in the supernatant collected from pUECs (p < 0.05). Especially, The group including uPA, PAI-1 were induce sperm intact, while it was reduced in sperm damage when compared to control (p < 0.05). Also, there was no significant difference group of tPA and tPA+I in the dead sperm and acrosome damage compared to control. The expression of tPA and PAI showed a common response. Percoll-separated spermatozoa in 90% layer reduced tPA and IL-related gene mRNA expression. Thus, Percoll-sparated sperm in 90% layer show that it can suppress inflammation through increased expression of TGF-β and downregulation of PA and IL in epithelial cells compared to 45% layer Percoll.