Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.3.382

Natural Origin Polymers: Applications as Wound Care Materials  

Karadeniz, Fatih (Department of Organic Material Science and Engineering, Pusan National University)
Sung, Hye Kyeong (Department of Organic Material Science and Engineering, Pusan National University)
Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Journal of Life Science / v.29, no.3, 2019 , pp. 382-393 More about this Journal
Abstract
Wound care is a health industry concern affecting millions worldwide. Recent increase in metabolic disorders such as diabetes comes with elevated risk of wound-based complications. Treatment and management of wounds are difficult practices due to complexity of the wound healing process. Conventional wound dressings and treatment applications only provide limited benefits which are mainly aimed to keep wound protected from external factors. To improve wound care, recent developments make biopolymers to be of high interest and importance to researchers and medical practitioners. Biopolymers are polymers or natural origin produced by living organisms. They are credited to be highly biocompatible and biodegradable. Currently, studies reported biopolymers to exhibit various health beneficial properties such as antimicrobial, anti-inflammatory, hemostatic, cell proliferative and angiogenic activities which are crucial for effective wound management. Several biopolymers, namely chitosan, cellulose, collagen, hyaluronic acid and alginic acid have been already investigated and applied as wound dressing agents. Different derivatives of biopolymers have also been developed by cross-linking with other molecules, grafting with other polymers, and loading with bioactive agents or drugs which showed promising results towards wound healing without any undesired outcome such as scarring and physiological abnormalities. In this review, current applications of common biopolymers in wound treatment industry are highlighted to be a guide for further applications and studies.
Keywords
Chitosan; collagen; extracellular matrix; tissue repair; wound care;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu, M., Sabelman, E. E., Cao, Y., Chang, J. and Hentz, V. R. 2003. Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J. Biomed. Mater. Res. 67B, 586-592.   DOI
2 Hu, Y., Zhang, Z., Li, Y., Ding, X., Li, D., Shen, C. and Xu, F. J. 2018. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol. Rapid Commun. 39, 1800069.   DOI
3 Ong, S. Y., Wu, J., Moochhala, S. M., Tan, M. H. and Lu, J. 2008. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29, 4323-4332.   DOI
4 Paul, W. and Sharma, C. P. 2004. Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 18, 18-23.
5 Pereira, R. F. and Bartolo, P. J. 2016. Traditional therapies for skin wound healing. Adv. Wound Care 5, 208-229.   DOI
6 Pereira, R., Mendes, A. and Bartolo, P. 2013. Alginate/aloe vera hydrogel films for biomedical applications. Procedia CIRP 5, 210-215.   DOI
7 Pilcher, B. K., Dumin, J. A., Sudbeck, B. D., Krane, S. M., Welgus, H. G. and Parks, W. C. 1997. The activity of collagenase-1 is required for keratinocyte migration on a type i collagen matrix. J. Cell Biol. 137, 1445-1457.   DOI
8 Powers, J. G., Higham, C., Broussard, K. and Phillips, T. J. 2016. Wound healing and treating wounds: chronic wound care and management. J. Am. Acad. Dermatol. 74, 607-625.   DOI
9 Rathi, S., Saka, R., Domb, A. J. and Khan, W. 2019. Proteinbased bioadhesives and bioglues. Polym. Adv. Technol. 30, 217-234.   DOI
10 Revelli, L., Tempera, S. E., Bellantone, C., Raffaelli, M. and Lombardi, C. P. 2016. Topical hemostatic agents, pp. 249-259. In: Lombardi, C. P. and Bellantone R. (eds.), Minimally Invasive Therapies for Endocrine Neck Diseases. Springer Publishing: Cham, Switzerland.
11 Zhou, Q., Kang, H., Bielec, M., Wu, X., Cheng, Q., Wei, W. and Dai, H. 2018. Influence of different divalent ions crosslinking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr. Polym. 197, 292-304.   DOI
12 Yildirim, S., Ozener, H. O., Dogan, B. and Kuru, B. 2017. Effect of topically-applied hyaluronic-acid on pain and palatal epithelial wound healing: an examiner-blind, randomized, controlled clinical trial. J. Periodontol. 89, 1-14.   DOI
13 Younes, I., Rinaudo, M., Younes, I. and Rinaudo, M. 2015. Chitin and chitosan preparation from marine sources. structure, properties and applications. Mar. Drugs 13, 1133-1174.   DOI
14 Zhang, D. L., Gu, L. J., Liu, L., Wang, C. Y., Sun, B. S., Li, Z. and Sung, C. K. 2009. Effect of wnt signaling pathway on wound healing. Biochem. Biophys. Res. Commun. 378, 149-151.   DOI
15 Ishihara, M., Ono, K., Sato, M., Nakanishi, K., Saito, Y., Yura, H., Matsui, T., Hattori, H., Fujita, M., Kikuchi, M. and Kurita, A. 2001. Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair Regen. 9, 513-521.   DOI
16 Huang, J., Ren, J., Chen, G., Li, Z., Liu, Y., Wang, G. and Wu, X. 2018. Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and plga microspheres for management of non-healing infected wounds. Mater. Sci. Eng. C 89, 213-222.   DOI
17 Huang, X., Li, L. D., Lyu, G. M., Shen, B. Y., Han, Y. F., Shi, J. L., Teng, J. L., Feng, L., Si, S. Y., Wu, J. H., Liu, Y. J., Sun, L. D. and Yan, C. H. 2018. Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg. Chem. Front. 5, 386-393.   DOI
18 Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., Yura, H., Matsui, T., Hattori, H., Uenoyama, M. and Kurita, A. 2002. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23, 833-840.   DOI
19 Jones, V., Grey, J. E. and Harding, K. G. 2006. Wound dressings. BMJ 332, 777-780.   DOI
20 Kamoun, E. A., Kenawy, E. R. S. and Chen, X. 2017. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8, 217-233.   DOI
21 Chan, L. W., Kim, C. H., Wang, X., Pun, S. H., White, N. J. and Kim, T. H. 2016. PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage. Acta Biomater. 31, 178-185.   DOI
22 Bodnar, R. J. 2015. Chemokine regulation of angiogenesis during wound healing. Adv. Wound Care 4, 641-650.   DOI
23 Braiman-Wiksman, L., Solomonik, I., Spira, R. and Tennenbaum, T. 2007. Novel insights into wound healing sequence of events. Toxicol. Pathol. 35, 767-779.   DOI
24 Brett, D. 2008. A review of collagen and collagen-based wound dressings. Wounds 20, 347-356.
25 Chaudhari, A., Vig, K., Baganizi, D., Sahu, R., Dixit, S., Dennis, V., Singh, S., Pillai, S., Chaudhari, A. A., Vig, K., Baganizi, D. R., Sahu, R., Dixit, S., Dennis, V., Singh, S. R. and Pillai, S. R. 2016. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int. J. Mol. Sci. 17, 1974.   DOI
26 Chen, W. Y. and Abatangelo, G. 1999. Functions of hyaluronan in wound repair. Wound Repair Regen. 7, 79-89.   DOI
27 Chu, J., Shi, P., Yan, W., Fu, J., Yang, Z., He, C., Deng, X. and Liu, H. 2018. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of mscs differentiation potential and diabetic wound healing. Nanoscale 10, 9547-9560.   DOI
28 Cremar, L., Gutierrez, J., Martinez, J., Materon, L., Gilkerson, R., Xu, F. and Lozano, K. 2018. Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Mashhad Univ. Med. Sci. 5, 6-14.
29 Karri, V. V. S. R., Kuppusamy, G., Talluri, S. V., Mannemala, S. S., Kollipara, R., Wadhwani, A. D., Mulukutla, S., Raju, K. R. S. and Malayandi, R. 2016. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 93, 1519-1529.   DOI
30 Dabiri, G., Damstetter, E. and Phillips, T. 2016. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care 5, 32-41.   DOI
31 Koehler, J., Brandl, F. P. and Goepferich, A. M. 2018. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 100, 1-11.   DOI
32 Korting, H., Schollmann, C. and White, R. 2011. Management of minor acute cutaneous wounds: importance of wound healing in a moist environment. J. Eur. Acad. Dermatol. Venereol. 25, 130-137.   DOI
33 Landen, N. X., Li, D. and Stahle, M. 2016. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861-3885.   DOI
34 Laurens, N., Koolwijk, P. and De Maat, M. P. M. 2006. Fibrin structure and wound healing. J. Thromb. Haemost. 4, 932-939.   DOI
35 LeBaron, R. G. and Athanasiou, K. A. 2000. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 6, 85-103.   DOI
36 Lee, K. Y. and Mooney, D. J. 2012. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106-126.   DOI
37 Li, H., Xue, Y., Jia, B., Bai, Y., Zuo, Y., Wang, S., Zhao, Y., Yang, W. and Tang, H. 2018. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr. Polym. 188, 92-100.   DOI
38 Li, J., Chen, J. and Kirsner, R. 2007. Pathophysiology of acute wound healing. Clin. Dermatol. 25, 9-18.   DOI
39 Rodriguez, D., Morrison, C. J. and Overall, C. M. 2010. Matrix metalloproteinases: what do they not do? new substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta 1803, 39-54.   DOI
40 Rho, K. S., Jeong, L., Lee, G., Seo, B. M., Park, Y. J., Hong, S. D., Roh, S., Cho, J. J., Park, W. H. and Min, B. M. 2006. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27, 1452-1461.   DOI
41 Roh, D. H., Kang, S. Y., Kim, J. Y., Kwon, Y. B., Young Kweon, H., Lee, K. G., Park, Y. H., Baek, R. M., Heo, C. Y., Choe, J. and Lee, J. H. 2006. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J. Mater. Sci. Mater. Med. 17, 547-552.   DOI
42 Shi, L., Zhao, Y., Xie, Q., Fan, C., Hilborn, J., Dai, J. and Ossipov, D. A. 2018. Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing. Adv. Healthc. Mater. 7, 1700973.   DOI
43 Simoes, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonca, A. G. and Correia, I. J. 2018. Recent advances on antimicrobial wound dressing: a review. Eur. J. Pharm. Biopharm. 127, 130-141.   DOI
44 Singer, A. J. and Clark, R. A. F. 1999. Cutaneous wound healing. N. Engl. J. Med. 341, 738-746.   DOI
45 Slominski, A. T., Zmijewski, M. A., Semak, I., Kim, T. K., Janjetovic, Z., Slominski, R. M. and Zmijewski, J. W. 2017. Melatonin, mitochondria, and the skin. Cell. Mol. Life Sci. 74, 3913-3925.   DOI
46 Squarize, C. H., Castilho, R. M., Bugge, T. H. and Gutkind, J. S. 2010. Accelerated wound healing by mtor activation in genetically defined mouse models. PLoS One 5, e10643.   DOI
47 Ehrlich, H. 2000. Collagen considerations in scarring and regenerative repair, pp. 99-113. In: Garg, H. G. and Longaker, M. T. (eds.), Scarless Wound Healing. CRC Press: Boca Raton, FL, USA.
48 Degim, Z., Celebi, N., Sayan, H., Babul, A., Erdogan, D. and Take, G. 2002. An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 22, 187-198.   DOI
49 Dhivya, S., Padma, V. V. and Santhini, E. 2015. Wound dressings - a review. BioMedicine 5, 22.   DOI
50 Dias, A. M. A., Braga, M. E. M., Seabra, I. J., Ferreira, P., Gil, M. H. and de Sousa, H. C. 2011. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int. J. Pharm. 408, 9-19.   DOI
51 El Fawal, G. F., Abu-Serie, M. M., Hassan, M. A. and Elnouby, M. S. 2018. Hydroxyethyl cellulose hydrogel for wound dressing: fabrication, characterization and in vitro evaluation. Int. J. Biol. Macromol. 111, 649-659.   DOI
52 Gao, F., Liu, Y., He, Y., Yang, C., Wang, Y., Shi, X. and Wei, G. 2010. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 29, 107-116.   DOI
53 Gao, F., Yang, C. X., Mo, W., Liu, Y. W. and He, Y. Q. 2008. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin. Investig. Med. 31, 106.   DOI
54 Liu, Y., Sui, Y., Liu, C., Liu, C., Wu, M., Li, B. and Li, Y. 2018. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym. 188, 27-36.   DOI
55 Ghatak, S., Hascall, V. C., Rodriguez, R. M., Markwald, R. R. and Misra, S. 2017. Inflammation, wound healing, and fibrosis, pp. 195-209. In: Turksen, K. (ed.), Wound healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects. Wiley-Blackwell: Hoboken, NJ, USA.
56 Golebiewska, E. M. and Poole, A. W. 2015. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 29, 153-162.   DOI
57 Li, X., Nan, K., Li, L., Zhang, Z. and Chen, H. 2012. In vivo evaluation of curcumin nanoformulation loaded methoxy poly(ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr. Polym. 88, 84-90.   DOI
58 Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M. and Hsu, S. 2013. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603-611.   DOI
59 Lindholm, C. and Searle, R. 2016. Wound management for the 21st century: combining effectiveness and efficiency. Int. Wound J. 13, 5-15.   DOI
60 Lloyd, L. L., Kennedy, J. F., Methacanon, P., Paterson, M. and Knill, C. J. 1998. Carbohydrate polymers as wound management aids. Carbohydr. Polym. 37, 315-322.   DOI
61 Li, X., Chen, S., Zhang, B., Li, M., Diao, K., Zhang, Z., Li, J., Xu, Y., Wang, X. and Chen, H. 2012. In situ injectable nano-composite hydrogel composed of curcumin, n,o-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm. 437, 110-119.   DOI
62 Martin, P. and Nunan, R. 2015. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 173, 370-378.   DOI
63 Miao, J., Pangule, R. C., Paskaleva, E. E., Hwang, E. E., Kane, R. S., Linhardt, R. J. and Dordick, J. S. 2011. Lysostaphinfunctionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32, 9557-9567.   DOI
64 Minagawa, T., Okamura, Y., Shigemasa, Y., Minami, S. and Okamoto, Y. 2007. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr. Polym. 67, 640-644.   DOI
65 Tamer, T. M., Valachova, K., Hassan, M. A., Omer, A. M., El-Shafeey, M., Mohy Eldin, M. S. and Soltes, L. 2018. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: in vitro and in vivo evaluation studies. Mater. Sci. Eng. C 90, 227-235.   DOI
66 Stone, C. A., Wright, H., Devaraj, V. S., Clarke, T. and Powell, R. 2000. Healing at skin graft donor sites dressed with chitosan. Br. J. Plast. Surg. 53, 601-606.   DOI
67 Sun, L., Gao, W., Fu, X., Shi, M., Xie, W., Zhang, W., Zhao, F. and Chen, X. 2018. Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater. Sci. 6, 340-349.   DOI
68 Tamayol, A., Mohammadi, M. H., Bagherifard, S., Khademhosseini, A., Akbari, M., Serex, L., Faramarzi, N. and Mostafalu, P. 2016. Textile technologies and tissue engineering: a path toward organ weaving. Adv. Healthc. Mater. 5, 751-766.   DOI
69 Thomas, S. 2000. Alginate dressings in surgery and wound management - part 1. J. Wound Care 9, 56-60.   DOI
70 Tsala, D. E., Amadou, D. and Habtemariam, S. 2013. Natural wound healing and bioactive natural products. Phytopharmacology 4, 532-560.
71 Ueno, H., Mori, T. and Fujinaga, T. 2001. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev. 52, 105-15.   DOI
72 Gupta, S., Andersen, C., Black, J., de Leon, J., Fife, C., Lantis Ii, J. C., Niezgoda, J., Snyder, R., Sumpio, B., Tettelbach, W., Treadwell, T., Weir, D. and Silverman, R. P. 2017. Management of chronic wounds: diagnosis, preparation, treatment, and follow-up. Wounds a Compend. Clin. Res. Pract. 29, S19-S36.
73 Gonzalez, A. C. de O., Costa, T. F., Andrade, Z. de A., Medrado, A. R. A. P., Gonzalez, A. C. de O., Costa, T. F., Andrade, Z. de A. and Medrado, A. R. A. P. 2016. Wound healing - a literature review. An. Bras. Dermatol. 91, 614-620.   DOI
74 Gunatillake, P. A., Adhikari, R. and Gadegaard, N. 2003. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1-16.   DOI
75 Guo, S. and DiPietro, L. A. 2010. Factors affecting wound healing. J. Dent. Res. 89, 219-229.   DOI
76 Gurtner, G. C., Werner, S., Barrandon, Y. and Longaker, M. T. 2008. Wound repair and regeneration. Nature 453, 314-321.   DOI
77 Hakkarainen, T., Koivuniemi, R., Kosonen, M., Escobedo-Lucea, C., Sanz-Garcia, A., Vuola, J., Valtonen, J., Tammela, P., Makitie, A., Luukko, K., Yliperttula, M. and Kavola, H. 2016. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 244, 292-301.   DOI
78 Hashemi Doulabi, A., Mirzadeh, H., Imani, M. and Samadi, N. 2013. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr. Polym. 92, 48-56.   DOI
79 Wahl, D. A., Sachlos, E., Liu, C. and Czernuszka, J. T. 2007. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 18, 201-209.
80 Wagenhauser, M. U., Mulorz, J., Ibing, W., Simon, F., Spin, J. M., Schelzig, H. and Oberhuber, A. 2016. Oxidized (non)-regenerated cellulose affects fundamental cellular processes of wound healing. Sci. Rep. 6, 32238.   DOI
81 Moura, L. I. F., Dias, A. M. A., Leal, E. C., Carvalho, L., de Sousa, H. C. and Carvalho, E. 2014. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater. 10, 843-857.   DOI
82 Hoenich, N. A. 2007. Cellulose for medical applications: past, present, and future. BioResources 1, 270-280.   DOI
83 Houghton, P. J., Hylands, P. J., Mensah, A. Y., Hensel, A. and Deters, A. M. 2005. In vitro tests and ethnopharmacological investigations: wound healing as an example. J. Ethnopharmacol. 100, 100-107.   DOI
84 Minutti, C. M., Knipper, J. A., Allen, J. E. and Zaiss, D. M. W. 2017. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3-11.   DOI
85 Mogosanu, G. D. and Grumezescu, A. M. 2014. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463, 127-136.   DOI
86 Mohamad, N., Mohd Amin, M. C. I., Pandey, M., Ahmad, N. and Rajab, N. F. 2014. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr. Polym. 114, 312-320.   DOI
87 Moran, J. M., Pazzano, D. and Bonassar, L. J. 2003. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 9, 63-70.   DOI
88 Morgan, C. and Nigam, Y. 2013. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis 16, 493-502.   DOI
89 Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., Tanaka, Y., Kiyosawa, T., Sato, Y. and Ishihara, M. 2010. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31, 83-90.   DOI
90 Muxika, A., Etxabide, A., Uranga, J., Guerrero, P. and de la Caba, K. 2017. Chitosan as a bioactive polymer: processing, properties and applications. Int. J. Biol. Macromol. 105, 1358-1368.   DOI
91 Xie, H., Chen, X., Shen, X., He, Y., Chen, W., Luo, Q., Ge, W., Yuan, W., Tang, X., Hou, D., Jiang, D., Wang, Q., Liu, Y., Liu, Q. and Li, K. 2018. Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int. J. Biol. Macromol. 107, 93-104.   DOI
92 Wang, L., Khor, E., Wee, A. and Lim, L. Y. 2002. Chitosan-alginate pec membrane as a wound dressing: assessment of incisional wound healing. J. Biomed. Mater. Res. 63, 610-618.   DOI
93 WHO 2010. Injuries and violence: The facts. Available at: http://www.who.int/violence_injury_prevention/key_facts/en/ (Accessed: 12 February 2019).
94 Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q. and Guo, S. 2014. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slowreleased antimicrobial wound dressing. Carbohydr. Polym. 102, 762-771.   DOI
95 Xue, M. and Jackson, C. J. 2015. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 4, 119-136.   DOI
96 Agrawal, P., Soni, S., Mittal, G. and Bhatnagar, A. 2014. Role of polymeric biomaterials as wound healing agents. Int. J. Low. Extrem. Wounds 13, 180-190.   DOI
97 Yang, D. and Jones, K. S. 2009. Effect of alginate on innate immune activation of macrophages. J. Biomed. Mater. Res. Part A 90A, 411-418.   DOI
98 Yang, X., Liu, W., Li, N., Wang, M., Liang, B., Ullah, I., Luis Neve, A., Feng, Y., Chen, H. and Shi, C. 2017. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci. 5, 2357-2368.   DOI
99 Yew, T. L., Hung, Y. T., Li, H. Y., Chen, H. W., Chen, L. L., Tsai, K. S., Chiou, S. H., Chao, K. C., Huang, T. F., Chen, H. L. and Hung, S. C. 2011. Enhancement of wound healing by human multipotent stromal cell conditioned medium: the paracrine factors and p38 mapk activation. Cell Transplant. 20, 693-706.   DOI
100 Aderibigbe, B. A. and Buyana, B. 2018. Alginate in wound dressings. Pharmaceutics 10, 42.   DOI
101 Avila Rodriguez, M. I., Rodriguez Barroso, L. G. and Sanchez, M. L. 2018. Collagen: a review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 17, 20-26.   DOI
102 Obara, K., Ishihara, M., Ishizuka, T., Fujita, M., Ozeki, Y., Maehara, T., Saito, Y., Yura, H., Matsui, T., Hattori, H., Kikuchi, M. and Kurita, A. 2003. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24, 3437-3444.   DOI
103 Ahmed, S. and Ikram, S. 2016. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci. 10, 27-37.
104 Alemdaroglu, C., Degim, Z., Celebi, N., Zor, F., Ozturk, S. and Erdogan, D. 2006. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32, 319-327.   DOI
105 Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T. and Mooney, D. J. 2001. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res. 80, 2025-2029.   DOI
106 Athanasiou, K. A., Niederauer, G. G. and Agrawal, C. M. 1996. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93-102.   DOI
107 Bellis, S. L. 2011. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32, 4205-4210.   DOI
108 Biagini, G., Bertani, A., Muzzarelli, R., Damadei, A., DiBenedetto, G., Belligolli, A., Riccotti, G., Zucchini, C. and Rizzoli, C. 1991. Wound management with N-carboxybutyl chitosan. Biomaterials 12, 281-286.   DOI
109 Boateng, J. and Catanzano, O. 2015. Advanced therapeutic dressings for effective wound healing - a review. J. Pharm. Sci. 104, 3653-3680.   DOI