• Title/Summary/Keyword: infinite-layer

Search Result 145, Processing Time 0.026 seconds

Soil-Reinforcement Interaction Determined by Extension Test (인장시험(引張試驗)에 의한 보강토(補强土)의 거동결정(擧動決定))

  • Kim, Oon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • The new technique has been used to determine the soil-reinforcement interaction. The testing apparatus is essentially a triaxial cell fitted with the capability to house a hollow cylinderical sample. A hollow cylinderical sand specimen with a concentrical layer of reinfarcing material sandwitched in the middle is used in this investigation. The reinforcement is fastened at the base. The hollow specimen can be viewed as a "unit sheet" of a soil-reinforcement composite system of infinite horizontal extent. Axial load as well as inner and outer chamber pressures can be applied to perform a test. The specimen is first subjected to an isotropic stress state corresponding to the overburden pressure. Next, an extension test by reducing the axial load is carried out. The specimen is "loaded" to failure by either the breakage of reinforcing material (tensile failure) or slippage which takes place at the soil-reinforcement interface (i.e. the overcoming of the bonding capacity). Since the reinforcement is fastened at its lower end to the base, any tendency of relative movement between the reinforcement and the sand during an extension test can induce tensile force in the reinforcement thus forming a "reversed pull-out" test condition. Preliminary test results have demonstrated positively of the new approach to test the soil-reinforcement interaction. Reinforcing elements of different extensibility were used to study the deformbility of reinforced soil. Furthermore, both the breakage and the pull-out modes of failure were observed.

  • PDF

A Numerical Analysis on the Freeze Coating of a Non-Isothermal Flat Plate with a Binary Alloy (비등온 평판의 이성분 합금 냉각코팅에 관한 수치해석)

  • Nam, Jin-Hyeon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1437-1446
    • /
    • 2000
  • A numerical analysis on the freeze coating process of a non-isothermal finite dimensional plate with a binary alloy is performed to investigate the growth and decay behavior of the solid and the mushy layer of the freeze coat and a complete procedure to calculate the process is obtained in this study. The continuously varying solid and mushy layers are immobilized by a coordinate transform and the resulting governing differential equations are solved by a finite difference technique. To account for the latent heat release and property change during solidification, proper phase change models are adopted. And the convection in the liquid melt is modeled as an appropriate heat transfer boundary condition at the liquid/mushy interface. The present results are compared with analytic solutions derived for the freeze coating of infinite dimensional plates and the discrepancy is found to be less than 0.5 percent in relative magnitude for all simulation cases. In addition the conservation of thermal energy is checked. The results show that the freeze coat grows proportional to the 1.2 square of axial position as predicted by analytic solutions ar first. But after the short period of initial growth, the growth rate of the freeze coat gradually decreases and finally the freeze coat starts to decay. The effects of various non-dimensional processing parameters on the behavior of freeze coat are also investigated.

An Analytical Model of the First Eigen Energy Level for MOSFETs Having Ultrathin Gate Oxides

  • Yadav, B. Pavan Kumar;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.203-212
    • /
    • 2010
  • In this paper, we present an analytical model for the first eigen energy level ($E_0$) of the carriers in the inversion layer in present generation MOSFETs, having ultrathin gate oxides and high substrate doping concentrations. Commonly used approaches to evaluate $E_0$ make either or both of the following two assumptions: one is that the barrier height at the oxide-semiconductor interface is infinite (with the consequence that the wave function at this interface is forced to zero), while the other is the triangular potential well approximation within the semiconductor (resulting in a constant electric field throughout the semiconductor, equal to the surface electric field). Obviously, both these assumptions are wrong, however, in order to correctly account for these two effects, one needs to solve Schrodinger and Poisson equations simultaneously, with the approach turning numerical and computationally intensive. In this work, we have derived a closed-form analytical expression for $E_0$, with due considerations for both the assumptions mentioned above. In order to account for the finite barrier height at the oxide-semiconductor interface, we have used the asymptotic approximations of the Airy function integrals to find the wave functions at the oxide and the semiconductor. Then, by applying the boundary condition at the oxide-semiconductor interface, we developed the model for $E_0$. With regard to the second assumption, we proposed the inclusion of a fitting parameter in the wellknown effective electric field model. The results matched very well with those obtained from Li's model. Another unique contribution of this work is to explicitly account for the finite oxide-semiconductor barrier height, which none of the reported works considered.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

Analysis of the Bioheat Equation Considering Tissue Layers with Sinusoidal Temperature Oscillation on the Skin (사인 주기의 온도 변화가 가해지는 피부 조직의 생체열 방정식에 대한 해석)

  • Choi, Woo-Lim;Moon, Sang-Don;Youn, Suk-Bum;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.757-762
    • /
    • 2011
  • We investigate the transient temperature response in biological tissue whose surface is exposed to alternately varying sinusoidal oscillation. Based on the Pennes bio-heat equation, we apply numerical analysis using a finite element method to find the effects of the physical properties of the skin layers. Three layers of tissue-epidermis, dermis, and subcutaneous-are considered as the solution region. We investigate the effects of different properties of the skin layers on the temperature profile. We also investigate the effects of the perfusion rate for the dermis, which is the most sensitive layer. The results show that the temperature profile of tissue depth has a discontinuous point when different physical properties are used.

Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes (다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화)

  • Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition (표면 니켈 조성에 따른 팔라듐-니켈-은 합금 수소분리막의 수소투과선택 특성)

  • Lim, Da-Sol;Kim, Se-Hong;Kim, Do-Hui;Cho, Seo-Hyun;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.277-290
    • /
    • 2018
  • In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.

X-ray crystal structure of two-dimensional bimetallic host clathrate with 2-aminoethanol, [Cd{NH2CH2CH2OH}2Ni(CN)4]·3C6H5NH2·H2O

  • Kim, Chong-Hyeak;Moon, Hyoung-Sil;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.562-568
    • /
    • 2008
  • A novel two-dimensional cadmium(II)-nickel(II) bimetallic host clathrate, $[Cd{NH_2CH_2CH_2OH}_2Ni(CN)_4]{\cdot}3C_6H_5NH_2{\cdot}H_2O$, 1, has been synthesized and structurally characterized by X-ray single crystallographic method. The clathrate 1 crystallizes in the monoclinic system, space group $P2_1/c$ with a = 14.370(3), b = 7.728(1), c = 28.172(4) ${\AA}$, ${\beta}=97.58(1)^{\circ}$, V = 3101.1(9) ${\AA}^3$, Z = 4. The host framework of the clathrate 1 is built of the cyanide bridges between octahedral Cd(II) atom and square planar Ni(II) atom. The octahedral Cd atoms ligated by two 2-aminoethanol molecules and four cyanide ligands bridged with square planar Ni atoms. The Ni atoms bridges to four Cd atoms via cyanides is made up of puckered quadrangles of composition $\{CdNi(CN)_2\}_2$, all edges are shared. This cyanide bridges form an infinite two-dimensional host networks stacking along b axis. 2-Aminoethanol ligands bond to Cd atom through N atom as a monodentate ligand in the axial position and four cyanides take an equatorial plane with all in trans-configurations. The aniline guest molecules and water molecules are located in between the host layer sheets, respectively.

Nonlinear Earthquake Response Analysis of a Soil-Structure Interaction System Subjected to a Three-Directional Ground Motion (3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석)

  • Lee, Jin Ho;Kim, Jae Kwan;Kim, Jung Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.317-325
    • /
    • 2016
  • In this study, nonlinear earthquake responses of a soil-structure interaction(SSI) system which is subjected to a three-directional ground motion are examined. The structure and the near-field region of soil, where the geometry is irregular, the material properties are heterogeneous, and nonlinear dynamic responses are expected, are modeled by nonlinear finite elements. On the other hand, the infinite far-field region of soil, which has a regular geometry and homogeneous material properties and dynamic responses is assumed linearly elastic, is represented by three-dimensional perfectly matched discrete layers which can radiate elastic waves into infinity efficiently. Nonlinear earthquake responses of the system subjected to a three-directional ground motion are calculated with the numerical model. It is observed that the dynamic responses of a SSI system to a three-directional motion have a predominant direction according to the characteristics of the ground motion. The responses must be evaluated using precise analysis methods which can consider nonlinear behaviors of the system accurately. The the method employed in this study can be applied easily to boundary nonlinear problems as well as material nonlinear problems.

Numerical Analysis of Dynamic Response of Floating Offshore Wind Turbine to the Underwater Explosion using the PML Non-reflecting Technique (PML 무반사 기법을 이용한 부유식 해상풍력발전기의 수중폭발에 따른 동응답 수치해석)

  • Cho, Jin-Rae;Jeon, Soo-Hong;Jeong, Weui-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.521-527
    • /
    • 2016
  • This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.