Browse > Article
http://dx.doi.org/10.5695/JKISE.2018.51.5.277

Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition  

Lim, Da-Sol (Department of Advanced Materials Engineering, Kyonggi University)
Kim, Se-Hong (Department of Advanced Materials Engineering, Kyonggi University)
Kim, Do-Hui (Department of Advanced Materials Engineering, Kyonggi University)
Cho, Seo-Hyun (Industry-Academia Collaboration Foundation, Kyonggi University)
Kim, Dong-Won (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Journal of the Korean institute of surface engineering / v.51, no.5, 2018 , pp. 277-290 More about this Journal
Abstract
In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.
Keywords
Pd-Ni-Ag alloy hydrogen separation membrane; Sputter multi-deposition; Surface Ni composition; Hydrogen perm-selectivity; Porous stainless steel;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Uemiya, N. Sato, H. Ando, T. Matsuda, E. Kikuchi, Steam reforming of methane in a hydrogen-permeable membrane reactor, Appl. Catal., 67(1) (1990) 223-230.   DOI
2 S. K. Ryi, J. S. Park, Research trend of Pd-based hydrogen membrane, J. Ind. Eng. Chem., 14(3) (2011) 46-53.
3 D. Wang, J. Tong, H. Xu, Y. Matsumura, Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide, Catal. Today, 93-95 (2004) 689-693.   DOI
4 K. R. Hwang, D. K. Oh, S. W. Lee, J. S. Park, M. H. Song, W. H. Rhee, Porous stainless steel support for hydrogen separation Pd membrane; fabrication by metal injection molding and simple surface modification, I. J. Hydrogen. Energy, 42(21) (2017) 14583-14592.   DOI
5 C. H. Kim, J. H. Lee, S. T. Jo, D. W. kim, Improvement in long-term stability of Pd alloy hydrogen separation membranes, J. Kor. Inst. Surf. Eng., 48 (2015) 11-22.   DOI
6 N. Jemaa, J. Shu, S. Kaliaguine, B. P. A. Grandjean, Thin palladium film formation on shot peening modified porous stainless steel substrates, Ind. Eng. Chem. Res., 35(3) (1996) 973-977.   DOI
7 R. S. A. de lange, K. Keizer, A. J. Burggraaf, Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes, J. Membr. Sci., 104(1-2) (1995) 81-100.   DOI
8 N. W. Ockwig, T. M. Nenoff, Membranes for hydrogen separation, Chem. Rev., 107(10) (2007) 4078-4110.   DOI
9 S. K. Ryi, J. Y. Han, C. H. Kim, H. K. Kim, H. Y. Jung, Technical trends of hydrogen production, Clean. Technol., 23 (2017) 121-132
10 M. Wang, J. Song, Y. Li, X. Tan, Y. Chu, S. Liu, Hydrogen separation at elevated temperatures using metallic nickel hollow fiber membranes, AIChE. J., 63(7) (2017) 3026-3034.   DOI
11 H. B. Zhao, G. X. Xiong, G. V. Baron, Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering, Catal. Today, 56(1-3) (2000) 89-96.   DOI
12 S. E. Nam, K. H. Lee, A study on the palladium/nickel composite membrane by vacuum electrodeposition, J. Membr. Sci., 170(1) (2000) 91-99.   DOI
13 N. Itoh, T. Akiha, T. Sato, Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity, Catal. Today, 104(2-4) (2005) 231-237.   DOI
14 S. H. Kim, J. H. Yang, D. S. Lim, D. W. Kim, Hydrogen perm-selectivity property of the palladium hydrogen separation membranes on porous stainless steel support manufactured by metal injection molding, J. Korean Inst. Surf. Eng., 50(2) (2017) 98-107.   DOI
15 S. Nayebossadri, S. Fletcher, J. D. Speight, D. Book, Hydrogen permeation through porous stainless steel for palladium-based composite porous membranes, J. Membr. Sci., 515 (2016) 22-28   DOI
16 R. Messier, A. P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol., A2, (1984) 500.
17 J. A. Thornton, Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol., 11 (1974) 666.   DOI
18 C. H. Kim, J. Y. Han, N. C. Kim, S. K. Ryi, D. W. Kim, Characteristics of dense palladium alloy membranes formed by nano-scale nucleation and lateral growth, J. Membr. Sci., 502 (2016) 57-64.   DOI
19 Kyonggi University Industry Academy Cooperation Group, KR-B1-10-1861701, 03.30, 2018.
20 Y. Huang, R. Dittmeyer, Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion, J. Membr. Sci., 282(1-2) (2006) 296-310.   DOI
21 H. Baker, ASM Handbook 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1999) 200, Sections 2.2.
22 J. H. Lee, J. Y. Han, K. M. Kim, S. K. Ryi, D. W. Kim, Development of homogeneous Pd-Ag alloy membrane formed on porous stainless steel by multi-layered films and Ag-upfilling heat treatment, J. Membr. Sci., 492 (2015) 242-248.   DOI
23 R. Dittmeyer, V. Hollein, and K. Daub, Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium, J. Mol. Catal. A: Chem., 173, 135 (2001).   DOI
24 R. S. Souleimanova, A. S. Mulasyan, A. Varma, Pd membranes formed by electroless plating with osmosis: H2 permeation studies, AIChE J., 48 (2002) 262-298.   DOI
25 G. Huiyuan, S. L. Jerry Y, L. Yongdan, Z. Baoquan, Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel, J. Membr. Sci., 265 (2005) 142-152.   DOI
26 S. Zhongliang, W. Shanqiang, S. J. A, R. Mustapha, An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition, J. Membr. Sci., 280 (2006) 705-711.   DOI
27 B. K. R. Nair, J. Choi, M. P. Harold, Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes, J. Membr. Sci., 288 (2006) 67-84.
28 S. K. Ryi, J.S. Park, K. R. Hwang, C. B Lee, S. W. Lee, Repair of Pd-based composite membrane by polishing treatment, Int. J. Hydrogen Energy, 36 (2011) 13776-13780.   DOI
29 H. Baker, ASM Handbook 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1999) 29, Sections 2.2.
30 C. S. Jun, K. H. Lee, Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method (cold-wall), J. Membr. Sci., 176 (2000) 121-130.   DOI
31 K. Hideto, Y. Hisataka, Y. Isamu, P. Thijs, B. Rune, Inhibition effect of CO on hydrogen permeability of Pd-Ag membrane applied in a microchannel module configuration, Int. J. Hydrogen. Energy, 39 (2014) 17201-17209.   DOI
32 D. W. Kim, J. W. Park, S. H. Kim, J. S. Park, A study on the Pd-Ni alloy hydrogen membrane using the sputter deposition, J. Kor. Inst. Surf. Eng., 37 (2004) 243-248
33 Y. M. Hwang, K. J. Kim, W. W. So, S. J. Moon, K. Y. Lee, A study on intermediate layer for palladium-based alloy composite membrane fabrication, J. Korean Ind. Eng. Chem., 17 (2006) 458-464.
34 F. Piskin, T. Ozturk, Combinatorial screening of Pd-Ag-Ni membranes for hydrogen separation, J. Membr. Sci., 524 (2017) 631-636.   DOI
35 S.K. Ryi, J. S. Park, S. H. Kim, D. W. Kim, I. Cho, Formation of a defect-free Pd-Cu-Ni ternary alloy membrane on a polished porous nickel support (PNS), J. Membr. Sci., 318 (2008) 346-354   DOI
36 J. Y. Han, C. H. Kim, S. H. Kim, D. W. Kim, Development of Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity, Adv. Mater. Sci. Eng., 2014 (2014) 1-10
37 B. L. Woo, D. W. Kim, A study on the palladium alloy membrane for hydrogen separation, J. Kor. Inst. Surf. Eng., 42 (2009) 232-239   DOI
38 A. E. Lewis, H. Zhao, H. Syed, C. A. Wolden, J. D. Way, PdAu and PdAuAg composite membranes for hydrogen separation from synthetic water-gas shift streams containing hydrogen sulfide, J. Membr. Sci., 465 (2014) 167-176   DOI