• Title/Summary/Keyword: infinite element

Search Result 330, Processing Time 0.02 seconds

Wave Propagation Analysis of a Strip Foundation in Layered Soils using Infinite Elements (무한요소를 사용한 층상지반에 놓인 스트립기초의 진동전파해석)

  • 윤정방;김두기;김유진;박종찬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.202-209
    • /
    • 1996
  • In this paper, two dimensional vertical and comer infinite elements which can include multiple wave components to model underlying half space are developed. These elements are natural and economical to model underlying stiff half space or rock. To verify the behavior of these infinite elements, vertical, horizontal, and rocking compliances of a rigid strip foundation on a viscoelastic soil profile are analyzed and compared with those of Tzong and Penzien who used the boundary solution method. Good agreements are noticed between the two methods. The influence of material properties like Poisson's ratio, material damping, and stiffness ratio of layers as well as the influence of geometrical properties such as layer thicknesses and depth of foundation embedment are studied. Example analysis is carried out for the shaking table which is located in KIMM(Korea Institute of Machinery and Materials), and the vertical and horizontal displacements of the analysis are compared with the measured, and show good results and demonstrate the efficiency of the proposed method.

  • PDF

Analytical solution of a contact problem and comparison with the results from FEM

  • Oner, Erdal;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.607-622
    • /
    • 2015
  • This paper presents a comparative study of analytical method and finite element method (FEM) for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical results. Also, the contact areas obtained from finite element method are very close to results obtained from analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two methods.

Infinite Elements for the Evaluation of Wave Forces (파랑하중 산정을 위한 무한요소)

  • 박우선;윤정방;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1989
  • In this paper, the concept of the infinite element is applied to the linear wave diffraction and radiation problems. The hydrodynamic pressure forces are assumed to be inertially dominated, and viscous effects are neglected. The near field region surrounding the solid body is modelled using the conventional finite elements, and the far field region is represented using the infinite elements .In order to represent the scattered wave potentials in the far field region more accurately, the infinite elements are developed using special shape functions derived from the asymptotic expressions for the analytical eigenseries solution of the scattered waves. The system matrices of the infinite elements are constructed by performing the integration in the infinite direction analytically to achieve computational efficiency. Numerical analyses are carried out for vertical axisymmetric bodies to validate the infinite elements developed here. Comparisons with the results by other available numerical solution methods show that the present method using the infinite elements gives fairly good results. Numerical experiments are per-formed to determine the suitable location of the infinite elements and the appropriate size of the finite elements which directly affect accuracy and efficiency of the solution.

  • PDF

Analysis of Multi-Layered Structural Systems Using Nonlinear Finite Elements-Boundary Elements (반무한 다중 구조계의 비선형 유한요소 - 경계요소 해석)

  • 김문겸;장정범;이상도;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.58-64
    • /
    • 1992
  • It is usual that underground structures are constructed within multi-layered medium. In this paper, an efficient numerical model ling of multi-layered structural systems is studied using coupled analysis of finite elements and boundary elements. The finite elements are applied to the area in which the material nonlinearity is dominated, and the boundary elements are applied to the far field area where the nonlinearity is relatively weak. In the boundary element model 1 ins of the multi-layered medium, fundamental solutions are restricted. Thus, methods which can utilize existing Kelvin and Melan solution are sought for the interior multi-layered domain problem and semi infinite domain problem. Interior domain problem which has piecewise homogeneous layers is analyzed using boundary elements with Kelvin solution; by discretizing each homogeneous subregion and applying compatibility and equilibrium conditions between interfaces. Semi-infinite domain problem is analyzed using boundary elements with Melan solution, by superposing unit stiffness matrices which are obtained for each layer by enemy method. Each methodology is verified by comparing its results which the results from the finite element analysis and it is concluded that coupled analysis using boundary elements and finite elements can be reasonable and efficient if the superposition technique is applied for the multi-layered semi-infinite domain problems.

  • PDF

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

An efficient three-dimensional fluid hyper-element for dynamic analysis of concrete arch dams

  • Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.683-698
    • /
    • 2006
  • The accurate dynamic analysis of concrete arch dams relies heavily on employing a three-dimensional semi-infinite fluid element. The usual method for calculating the impedance matrix of this fluid hyper-element is dependent on the solution of a complex eigen-value problem for each frequency. In the present study, an efficient procedure is proposed which simplifies this procedure amazingly, and results in great computational time saving. Moreover, the accuracy of this technique is examined thoroughly and it is concluded that efficient procedure is incredibly accurate under all practical conditions.

A Combined Finite Element -Boundary Element Method of Underground Displacements Analysis (유한요소와 경계요소를 결합한 지하공동의 변위해석)

  • 황창규;박성재
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 1990
  • The finite element and boundary element methods of underground analysis are both well established numerical techniques for determination of stress and displacement distributions at underground excavation. The finite element method presents antithetical advantages and limitations. Complex constitutive behaviour may be modelled, at the expense of numerical efficiency and, for infinite domain, inadequate representation of remote bounadry conditions. The inherent advantages of the boundary element method are the ease with which infinite domain problems may be analysed, and the efficiency of analysis typically associated with a boundary value solution procedure. Application of the method is limited by the requirements linear constitutive behaviour for the medium. A combined of the finite element and boundary element methods of underground analysis is shown to preserve the advantages of each procedure, and, eliminates their individual disadvantages. Procedures employed in this papers described combined FEBEM algorithm. Solutions of underground excavation verifying the performance of combined FEBEM code are compared with theoretical solution, boundary element solution and finite element solution.

  • PDF

Acoustic Field Analysis of Ultrasonic Focusing Transducer by Using Finite Element. Method and Hybrid Type Infinite Element Method (유한요소법과 하이브리드형 무한요소법을 이용한 초음파 집속변환자의 음장 해석)

  • Park, Soon-Jong;Yoon, Jong-Rak;Ha, Kang-Lyeol;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.36-43
    • /
    • 1995
  • This paper presents the lousing characteristics and the time. response of ultrasonic focusing transducer which is a coupled system with an electromechanical and an acoustical component. The Finite Element Method and the Hybrid Type Infinite Element Method are applied for the analysis. The position of the focal points and the resolutions is obtained from the loosing characteristics and the time response. It is found that the transducer with the damper, which stabilizes the displacement of the radiation surface, gives a better resolution. In conclusion, the results could be applied to the design and the performance analysis of the ultrasonic focusing transducer.

  • PDF

Calculation of Radiation Impedance for Piston Sources on a Spherical Baffle (구형 배플상의 피스톤 음원에 대한 방사임피던스 계산)

  • 박순종;김무준;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • The characteristics of radiation impedance for piston source on a spherical baffle are analyzed by algorithms which consists of Finite Element Method (FEM) and Hybrid type Infinite Element Method (HIEM). The results of self-radiation impedance for radiation angle and mutual radiation impedance between piston sources coincided with other reports on the spherical rigid baffle. For the spherical non-rigid baffles, the variations of self-radiation impedance and mutual-radiation impedance are identified. Therefore, these results can be applied to design and radiation characteristics analysis of acoustic transducers.

Vibration of Beams Induced by Wall Pressure Fluctuation in Turbulent Boundary Layer Using Numerical Approaches (수치 해석을 이용한 난류 경계층 내 벽면 변동 압력을 받는 보의 진동 해석)

  • Ryue, Jungsoo;Kim, Eunbi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.698-706
    • /
    • 2013
  • Structural vibration induced by excitation forces under turbulent boundary layer is investigated in terms of the numerical analysis in this paper. Since the responses of structures excited by the wall pressure fluctuation(WPF) are described by the power spectral density functions, they are calculated and reviewed theoretically for finite and infinite length beams. For the use of numerical approaches, the WPF needs to be discretized but conventional finite element method is not much effective for that purpose because the WPF lose the spatial correlation characteristics. As an alternative numerical technique for WPF modelling, a wavenumber domain finite element approach, called waveguide finite element method, is examined here for infinite length beams. From the comparison between the numerical and theoretical results, it was confirmed that the WFE method can effectively and easily cope with the excitation from WPF and hence the suitable approach.