• Title/Summary/Keyword: infiltration effect

Search Result 827, Processing Time 0.026 seconds

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.28-33
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve(SWCC) of granite and gneiss weathered soils are investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

  • PDF

Stability Analysis of Slope Considering Infiltration of Behind Ground (배면침투를 고려한 사면안정해석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Jang, Kyung-Jun;Chae, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1060-1067
    • /
    • 2009
  • Previous research on the slope failure has mainly reported that most of the slope failures occur due to surface rainfall infiltration in the rainy season. A slope of which surface is protected by shotcrete or plants, can also fail due to increase in pore water pressure from the ground water flow beneath the surface, rather than from the surface. In this study such case of slope behavior is investigated using the model test and numerical method including strength reduction method. Hydraulic boundary conditions of the slopes is considered using coupled numerical scheme. The failure mechanism of the slope is investigated and the effect of pore water pressure on slope safety is identified. Increase in pore water pressure due to lateral infiltration has significantly reduced the stability of slope.

  • PDF

Derivation of Infiltration Equation in Multilayered Soil by Two Phase Flow Theory (2개류체(個流體) 흐름이론(理論)에 의한 여러층 흙에서의 침투능공식유도(浸透能公式誘導))

  • Sonu, Jung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 1983
  • The Green-Ampt equation for infiltration has been intensively investigated by many researchers because of its simplicity and adequacy for fitting experimental data to theoretical one. The infiltration equation derived from the theory of two phase flow coincides with the Green-Ampt equation except the viscouse resistance correction factor. This approach clearly defines variables in the Green-Ampt equation and also encounters the effect of viscosity of two fluids. A new equation for infiltration into multilayered soil is derived from the theory of two phase flow and compared with conventional equation. The new equation shows lower infiltration rate than that of conventional one and it is believed that this caused from the inclusion of viscosity in the derivation.

  • PDF

field Study on Effects of Runoff Reduction in the Infiltration Collector Well (현장자료를 이용한 침투집수정의 유출저감 효과에 관한 연구)

  • Jang, Bok-Jin;Yeo, Woon-Kwang
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.611-618
    • /
    • 2002
  • In order to investigate the performance of the infiltration collector well and its effect on the runoff reduction, real-time field measurements are carried out. Based on these field data measured at Seongnam, Osan and Cheongju sites, the runoff reduction volumes and the peaks-cut-rate are quantitatively analyzed and compared with the total rainfall amount, the 10min averaged and the 10min maximum rainfall intensity. This results show that the infiltration collector well is very effective to reduce the runoff in urban area, which gives environmentally the positive to supply ground waters. It is also presented that the infiltration collector well is able to reduce up to 70% of the runoff and 40~70% of peaks, compared to a general one.

Experimental Study of Runoff Induced by Infiltration Trench (침투 트렌치로 인한 유출 양상의 실험 연구)

  • Lee, Sangho;Cho, Heeho;Lee, Jungmin;Park, Jaehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • Infiltration facilities are effective instruments to mitigate flood and can increase base runoff in urban watersheds. In order to analyze effects of infiltration trenches physical model experiments were conducted. The physical model facility consists of two soil tanks, artificial rainfall generators, tensiometers, and piezometers. The experiment was conducted by nine times and each case differed in rainfall intensity, rainfall duration and the type of ground surface. Measured quantities in the experiments are as follows: surface runoff, subsurface runoff, trench pipe runoff, groundwater level, water content, etc. The following resulted from the model experiment: The volume of subsurface runoff at trench watershed was maximum 78.3% compared with rainfall. This value is bigger than that of ordinary rate of subsurface runoff, and shows a groundwater recharge effect of trench. The time of runoff passing through the trench became earlier and the volume of runoff became larger with the increase of inflow into the trench, while trench exfiltration into ground became relatively smaller. The results of this study presented above show that infiltration trenches are effective instruments to increase base runoff during dry periods.

Effect of Postharvest Calcium Solution Dipping and Vacuum Infiltration on Calcium Content and Quality of Chojuro Pear Fruit (배 장십랑품종의 저장 전 $CaCl_2$처리에 따른 과실 칼슘함량과 과실특성의 변화)

  • Choi, Jong-Seung;Lee, Ju-Youn
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.57-61
    • /
    • 1998
  • Postharvest dipping of vacuum infiltration treatments of 'Chojuro' pear fruit in $CaCl_2$ resulted in increased calcium content, especially in fruit peel and outer flesh such as just below peel. As $CaCl_2$ concentrations increaced from 2% to 8% in dipping treatment, calcium content became higher. But vacuum infiltration under 200-600 mmHg did not affect and dipping and vaccum infiltration did not have any difference in fruit calcium content. Decreasing of fruit firmness determined at 4 weeks during storage was slower in fruits with $CaCl_2$ treatment than control.

  • PDF

Molecular characterization and biological changes caused by Agrobacterium-mediated infiltration of PgTRX1

  • Choi, Seung Hyuk;Seo, Ji Won;Lee, Jae Geun;Yu, Chang Yeon;Seong, Eun Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.205-211
    • /
    • 2021
  • In order to test the functionality of Panax ginseng thioredoxin 1 (PgTRX1) isolated from fermented wild ginseng roots, a transient effect on physiological activity were performed over a short time frame using the Agrobacterium infiltration technique. The PgTRX1 gene isolated from fermented wild ginseng was confirmed to have a size of 579 bp, and the expression of PgTRX1 was the highest in the sample after 6 h of fermentation. As a result of constructing this gene and confirming the infiltration reaction mediated by Agrobacterium in tobacco leaves, it was found that the expression of the NbHSR203j gene was also induced as PgTRX1 expression increased. As a result of measuring the biological activity of the infiltration samples, the total phenol content increased by 35.45±1.84 to 49.01±1.84 ㎍ GAE/mL compared to the control, and the total flavonoid amount of 9.52±0.41 to 9.82±0.25 ㎍ QE/mL was slightly high. From these results, Agrobacterium-mediated PgTRX1 appears to be related to the hypersensitive response induction mechanism of plants and the production of secondary metabolites such as phenolic substances.

Effect of Antecedent Rainfall on Infiltration Characteristics in Unsaturated Soil (선행강우의 영향에 따른 불포화토의 침투특성 분석)

  • Yoon, Gwi-Nam;Shin, Hosung;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.5-15
    • /
    • 2015
  • One-dimensional rainfall laboratory tests using gneissic weathered soil were conducted to investigate effect of antecedent rainfall on infiltration characteristics. Experimental results using samples from Chuncheon and Chungju sites showed that rainfall onto the ground surface decreased initial negative pore water pressure of unsaturated soils, which recovered gradually after the end of rainfall. Rainfall intensity increases water infiltration rate, and infiltration rate during main rainfall is faster than that of the preceding rainfall. It is considered that higher water saturation after antecedent rainfall increases water infiltration rate during main rainfall. In particular, Chungju sample with higher clay content had slower recovery of negative pore water pressure and infiltration rate. Numerical results using finite element slope stability analysis showed that reduction of initial negative pore pressure due to rainfall infiltration deteriorates slope stability, and diffusion of pore water pressure after the end of rainfall further reduces FS of the slope in the short term. Main rainfall after prior rainfall further reduced factor of safety of the unsaturated slope. Pattern of antecedent rainfall has a significant impact on the magnitude and distribution of initial pore water pressure in unsaturated soils which are controlling factor to assess factor of safety of unsaturated slope during rainfall.

Slope Stability Analysis of Unsaturated Soil Slopes Due to Rainfall Infiltration (강우침투에 따른 불포화 토사사면의 안정해석)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2000
  • This paper presents a procedure of calculating a safety factor of the unsaturated slope suffering from the rainfall infiltration. The process of infiltration into a slope due to rainfall and its effect on the behavior of the soil slope are examined by using a two dimensional finite element flow-deformation coupled analysis. A factor of safety is calculated at various elapsed times after the commencement of rainfall as in the following procedure. First, stresses are estimated at each Gaussian point from the coupled finite element analysis. Then, the global stress smoothing method is applied to get a continuous stress field. Based on this stress field, a factor of safety is calculated for a specified slip surface by a stress integration scheme. Then, a search strategy is used to find out a critical slip surface which is associated with the minimum factor of safety. Some numerical examples are analyzed in order to study the effect of hydraulic conductivity on the slope stability during rain-induced infiltration. According to the results, local failure zone can be formed near the slope surface due to inhomogeneous distribution of hydraulic conductivity If the failure zone is once formed, then the region extends until a large amount of slide activates. Therefore the local failure can be neglected no longer in the stability analysis.

  • PDF

Stability Evaluation of Weathered Gneiss Soil Slopes according to Clay Content (점토함유량에 따른 편마풍화토 비탈면의 안정성 평가)

  • Hyunsu Park;Byeongsu Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.15-23
    • /
    • 2023
  • In this study, the infiltration behavior of slopes composed of mixed soils with clay contents of 0%, 5%, and 10% in weathered Gneiss soil, which is a representative weathered soil in Korea, was investigated, and the stability of unsaturated slopes due to rainfall infiltration was examined. For this, in this study, the soil water characteristic curve was obtained through the water retention test, and the strength constant was obtained through the triaxial compression test. Based on the obtained results, the influence of clay content and antecedent rainfall effect (i.e., initial suction) on the formation of saturated zone (i.e., wetting band) and slope stability due to rainfall infiltration was examined through infiltration and stability analyses. As a result, it was found that the hig her the initial suction, the slower the formation of the saturated zone on the slope. In addition, it was found that as the clay content increases, the shear strength of the ground increases and the resistance to rainfall infiltration increases, and eventually the slope stability is greatly improved.