• 제목/요약/키워드: inertial frame

검색결과 75건 처리시간 0.033초

관성항법장치 오차방정식에 대한 두 가지 표현식 (Two expressions for the inertial navigation system error equations)

  • 김종주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.668-671
    • /
    • 1996
  • Two expressions for the inertial navigation system error equations are derived using a perturbation method; one in navigation frame, and the other in geographic frame. The equivalence between two expressions is shown by explicit equations and computer simulation.

  • PDF

관성항법장치의 관성 센서축과 하우징 축과의 비정렬 측정과 보상에 관한 연구 (A Study on Methods of Measuring and Compensating Misalignment between Inertial Sensor Body and Housing Frame)

  • 유해성;김태훈;김천중;이윤선;박흥원
    • 한국군사과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.374-380
    • /
    • 2012
  • In guided missile systems, reducing terminal-position error is the primary objective of the inertial navigation system. As a seeker is used to sense and track a target, the critical function of the inertial navigation system is to provide the seeker with accurate missile attitude information and help the seeker to keep tracking a target continuously. As inertial sensor body and missile body alignment errors are taken into account, it is desirable to minimize the alignment errors between the missile seeker and the attitude of inertial navigation system. Among the alignment errors, this paper addresses the methods of measuring and compensating misalignment between inertial sensor body and housing frame and shows test results of several experiments.

Pedagogical Mathematica Platform Visualizing the Coriolis Effects in 3-Cell Atmospheric Circulation Model

  • Kim, Bogyeong;Yun, Hee-Joong
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.91-99
    • /
    • 2014
  • The atmospheric flow in the 3-Cell model of global atmosphere circulation is described by the Lagrange's equation of the non-inertial frame where pressure force, frictional force and fictitious force are mixed in complex form. The Coriolis force is an important factor which requires calculation of fictitious force effects on atmospheric flow viewed from the rotating Earth. We make new Mathematica platform to solve Lagrange's equation by numerical analysis in order to analyze dynamics of atmospheric general circulation in the non-inertial frame. It can simulate atmospheric circulation process anywhere on the earth. It is expected that this pedagogical platform can be utilized to help students studying the atmospheric flow understand the mechanisms of atmospheric global circulation.

플랫폼 토크 명령에 의한 자세오차 미분방정식 유도 (Derivation of Attitude Error Differential Equations by Platform Torque Commands)

  • 김갑진;송기원
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.556-562
    • /
    • 2003
  • This paper presents new attitude error differential equations to define attitude errors as the rotation vector for inertial navigation systems. Attitude errors are defined with the rotation vector between the reference coordinate frame and the platform coordinate frame, and Platform dynamics to the reference coordinate frame due to platform torque command errors are defined. Using these concepts for attitude error definition and platform dynamics, we have derived attitude error differential equations expressed in original nonlinear form for GINS and SDINS and showed that these are equivalent to attitude error differential equations expressed in known linear form. The relation between attitude errors defined by the rotation vector and attitude errors defined by quaternion is clearly presented as well.

전산유체역학을 이용한 비행체의 피치와 롤 동안정 미계수 예측 (Prediction of Pitch and Roll Dynamic Derivatives for Flight Vehicle using CFD)

  • 이형로;공효준;김범수;이승수
    • 한국항공우주학회지
    • /
    • 제40권5호
    • /
    • pp.395-404
    • /
    • 2012
  • 본 논문에서는 전산유체역학을 이용하여 3차원 비행체 형상에 대한 동안정 미계수를 예측하였다. 피치에 대한 미계수는 피치방향의 조화진동운동을 통하여 계산하였고 롤 감쇠계수는 비관성 좌표계에 대한 정상해석을 통하여 계산하였다. 계산은 Basic Finner와 SDM 형상에 대해 수행했으며 다른 연구자의 실험적/수치적 결과와 비교하였다. 유동 계산을 위해 비관성 좌표계와 관성 좌표계에서 모두 사용할 수 있는 3차원 Euler 해석자를 개발하였다. 시간 정확성을 유지한 비정상 해석을 위해 이중시간적분법을 적용하였다. 동안정 미계수계산 결과는 다른 수치 및 실험적 연구 결과들과 잘 일치하는 것을 알 수 있었다.

Development of the Algorithm for Strapdown Inertial Navigation System for Short Range Navigation

  • Lee, Sang-Jong;Naumenko, C.;Bograd, V.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.81-91
    • /
    • 2000
  • The mechanization of navigation equation is depending on the designer according to the orientation vector relating the body frame to a chosen to inertial and navigation frames for its purposes. This paper considers the appropriate Earth Fixed frame for short range vehicle and develops a mechanization and algorithm for Strapdown Inertial Navigation System(SDINS). This mechanization consists of two parts : translational mechanization and rotational mechanization{attitude determination). The accuracy, availability and performance of this SDINS mechanization are verified on the simulation and the numerical method for integration attitude propagation is compared with a well-known method in a precession motion.

  • PDF

An Astronomer's View on the Current College-Level Textbook Descriptions of Tides

  • Ahn, Kyung-Jin
    • 한국지구과학회지
    • /
    • 제30권5호
    • /
    • pp.671-681
    • /
    • 2009
  • In the equilibrium theory of tides by Newton, tide on the Earth is a phenomenon driven by differential gravity contributed both by the Sun and the Moon. Due to the direct link of the generic tidal effect to the oceanic tides, college students in the earth science education department are exposed to this theory through oceanography lectures as well as astronomy lectures. Common oceanography textbooks adopt a non-inertial reference frame fixed to the Earth in which the fictitious, centrifugal force appears. This has a potential risk to provide misconceptions among students in various aspects including the followings: 1) this is how Newton originally derived the equilibrium theory of tides, and 2) the tide is a phenomenon appearing only in rotating systems. We show that in astronomy, a much simpler description, which employs the inertial frame, is generally used to explain tides and thus causes less confusion. We argue that the description used in astronomy is preferable both in the viewpoints of simplicity and ease of interpretation. Moreover, on a historical basis, an inertial frame was adopted by Newton in Principia to explain tides. Thus, the description used in astronomy is consistent with Newton's original approach. We also present various astrophysical tides which do not comply with the concept of centrifugal force in general. We therefore argue that the description used in oceanography should be compensated by that in astronomy, due to its complexity, historical inconsistency and limited applicability.

가상의 초기위치를 이용한 SDINS 폐루프 자체 정렬 알고리즘 (SDINS Closed Loop Self-Alignment Algorithm using Pseudo Initial Position)

  • 김태원
    • 한국항공우주학회지
    • /
    • 제45권6호
    • /
    • pp.463-472
    • /
    • 2017
  • 관성항법장치(Inertial Navigation System)는 항법 수행 전 동체 좌표계(body frame)와 항법 좌표계(navigation frame)사이의 좌표 변환 행렬(Direction Cosine Matrix: DCM)을 결정하여 초기자세를 구하는데 이 과정을 정렬(alignment)이라 한다. 정렬을 시작하기 위해서는 INS의 초기 위치 정보가 필요한데 해당 정보가 INS에 미리 입력되어 있지 않거나 당장에 초기위치를 모를 경우 이로 인해 INS에 전원이 인가된 후 정렬에 진입하기까지의 대기시간이 존재한다. 이러한 대기시간을 제거하기 위하여 본 논문에서는 INS 전원 인가 즉시 현재위치와 상이한 가상의 초기위치 값을 장입하여 스트랩다운 INS 정렬을 시작하고 추후에 정확한 위치를 INS에 입력하여 자세오차를 보상하는 정렬 알고리즘을 제시하였다. 항법 좌표계에서의 INS 센서 오차가 시간이 지남에 따라 자세오차에 미치는 영향성을 분석하여 가상의 초기위치 값 입력 시 발생하는 자세오차 만큼을 보상하는 폐루프 정렬 알고리즘의 성능을 검증하였다.

Lyapunov 변환을 이용한 SDINS 등가 오차모델 (SDINS Equivalent Error Models Using the Lyapunov Transformation)

  • 유명종;이장규;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.167-177
    • /
    • 2002
  • In Strapdown Inertial Navigation System(SDINS), error models based on previously proposed conversion equations between the attitude errors, are only valid in case the attitude errors are small. The SDINS error models have been independently studied according to the definition of the reference frame and of the attitude error. The conversion equations between the attitude errors applicable to SDINS with large attitude errors are newly derived. Lyapunov transformation matrices are also derived from the obtained results. Furthermore the general method, which is independent of the attitude error and the reference frame to derive SDINS error model, is proposed using the Lyapunov transformation.

SDINS의 좌표축 초기 직립에 관한 칼만 필터링 기법의 응용 (Application of Kalman Filtering Technique to Initial Axes Erection of SDINS)

  • 최근국;이만형;김중완
    • 한국정밀공학회지
    • /
    • 제4권4호
    • /
    • pp.56-71
    • /
    • 1987
  • Determination of navigation variables (latitude, longitude, and altitude) near the earth's surface is termed 'Terrestrial Navigation'. The quantities that are measured inertially are the total acceleration (or the integral fo this acceleration over a fixed time interval) and the total angular rate (or the integral of this angular rate over the same time interval). These measurements when suitably compensated can be manipulated to yield the navigation variables. Hence, it is essential that the initial values of position, orientation and velocity are accurately set up during the initial alignment process. Initial alignment of gimballed inertial navigation system ( GINS) is accomplished by gyrocompassing techniques. These cannot be used, in the case of strapdown inertial navigation system(SDINS), where the inertial instruments are directly strapped down to a vehicle frame. The basic objective of this paper is the development of digital method for the determination of the initial axes erection of a SDINS from vibration and sway currupted data on the launch pad.

  • PDF