• Title/Summary/Keyword: inertial frame

Search Result 75, Processing Time 0.026 seconds

A Study on Methods of Measuring and Compensating Misalignment between Inertial Sensor Body and Housing Frame (관성항법장치의 관성 센서축과 하우징 축과의 비정렬 측정과 보상에 관한 연구)

  • Yu, Hae-Sung;Kim, Tae-Hoon;Kim, Cheon-Joong;Lee, Youn-Seon;Park, Heung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.374-380
    • /
    • 2012
  • In guided missile systems, reducing terminal-position error is the primary objective of the inertial navigation system. As a seeker is used to sense and track a target, the critical function of the inertial navigation system is to provide the seeker with accurate missile attitude information and help the seeker to keep tracking a target continuously. As inertial sensor body and missile body alignment errors are taken into account, it is desirable to minimize the alignment errors between the missile seeker and the attitude of inertial navigation system. Among the alignment errors, this paper addresses the methods of measuring and compensating misalignment between inertial sensor body and housing frame and shows test results of several experiments.

Pedagogical Mathematica Platform Visualizing the Coriolis Effects in 3-Cell Atmospheric Circulation Model

  • Kim, Bogyeong;Yun, Hee-Joong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.91-99
    • /
    • 2014
  • The atmospheric flow in the 3-Cell model of global atmosphere circulation is described by the Lagrange's equation of the non-inertial frame where pressure force, frictional force and fictitious force are mixed in complex form. The Coriolis force is an important factor which requires calculation of fictitious force effects on atmospheric flow viewed from the rotating Earth. We make new Mathematica platform to solve Lagrange's equation by numerical analysis in order to analyze dynamics of atmospheric general circulation in the non-inertial frame. It can simulate atmospheric circulation process anywhere on the earth. It is expected that this pedagogical platform can be utilized to help students studying the atmospheric flow understand the mechanisms of atmospheric global circulation.

Derivation of Attitude Error Differential Equations by Platform Torque Commands (플랫폼 토크 명령에 의한 자세오차 미분방정식 유도)

  • 김갑진;송기원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.556-562
    • /
    • 2003
  • This paper presents new attitude error differential equations to define attitude errors as the rotation vector for inertial navigation systems. Attitude errors are defined with the rotation vector between the reference coordinate frame and the platform coordinate frame, and Platform dynamics to the reference coordinate frame due to platform torque command errors are defined. Using these concepts for attitude error definition and platform dynamics, we have derived attitude error differential equations expressed in original nonlinear form for GINS and SDINS and showed that these are equivalent to attitude error differential equations expressed in known linear form. The relation between attitude errors defined by the rotation vector and attitude errors defined by quaternion is clearly presented as well.

Prediction of Pitch and Roll Dynamic Derivatives for Flight Vehicle using CFD (전산유체역학을 이용한 비행체의 피치와 롤 동안정 미계수 예측)

  • Lee, Hyung-Ro;Gong, Hyo-Joon;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.395-404
    • /
    • 2012
  • This paper presents computations of the dynamic derivatives of three dimensional flight vehicle configurations using CFD. The pitch dynamic derivatives are computed from the pitch sinusoidal motion, while the roll damping is computed based on steady state calculation using a non-inertial frame method. The Basic Finner and the SDM(Standard Dynamic Model) are chosen for the benchmark tests against other numerical and experimental results. For the flow calculations, a 3-D Euler solver that can be run both on the non-inertial frame and on the inertial frame is developed. A dual-time stepping method is applied for the unsteady time accurate simulations. A good agreement of pitch-roll dynamic derivatives with previously published numerical results and the experimental results is observed.

Development of the Algorithm for Strapdown Inertial Navigation System for Short Range Navigation

  • Lee, Sang-Jong;Naumenko, C.;Bograd, V.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.81-91
    • /
    • 2000
  • The mechanization of navigation equation is depending on the designer according to the orientation vector relating the body frame to a chosen to inertial and navigation frames for its purposes. This paper considers the appropriate Earth Fixed frame for short range vehicle and develops a mechanization and algorithm for Strapdown Inertial Navigation System(SDINS). This mechanization consists of two parts : translational mechanization and rotational mechanization{attitude determination). The accuracy, availability and performance of this SDINS mechanization are verified on the simulation and the numerical method for integration attitude propagation is compared with a well-known method in a precession motion.

  • PDF

An Astronomer's View on the Current College-Level Textbook Descriptions of Tides

  • Ahn, Kyung-Jin
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.671-681
    • /
    • 2009
  • In the equilibrium theory of tides by Newton, tide on the Earth is a phenomenon driven by differential gravity contributed both by the Sun and the Moon. Due to the direct link of the generic tidal effect to the oceanic tides, college students in the earth science education department are exposed to this theory through oceanography lectures as well as astronomy lectures. Common oceanography textbooks adopt a non-inertial reference frame fixed to the Earth in which the fictitious, centrifugal force appears. This has a potential risk to provide misconceptions among students in various aspects including the followings: 1) this is how Newton originally derived the equilibrium theory of tides, and 2) the tide is a phenomenon appearing only in rotating systems. We show that in astronomy, a much simpler description, which employs the inertial frame, is generally used to explain tides and thus causes less confusion. We argue that the description used in astronomy is preferable both in the viewpoints of simplicity and ease of interpretation. Moreover, on a historical basis, an inertial frame was adopted by Newton in Principia to explain tides. Thus, the description used in astronomy is consistent with Newton's original approach. We also present various astrophysical tides which do not comply with the concept of centrifugal force in general. We therefore argue that the description used in oceanography should be compensated by that in astronomy, due to its complexity, historical inconsistency and limited applicability.

SDINS Closed Loop Self-Alignment Algorithm using Pseudo Initial Position (가상의 초기위치를 이용한 SDINS 폐루프 자체 정렬 알고리즘)

  • Kim, Taewon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.463-472
    • /
    • 2017
  • Inertial Navigation System Alignment is the process to determine direction cosine matrix which is the transformation matrix between the INS body frame and navigation frame. INS initial position value is necessary to INS attitude calculation, so that user should wait until he get such value to start the INS alignment. To remove the waiting time, we propose an alignment algorithm that immediately starts after the INS power on by using pseudo initial position input and then is completed with attitude error compensation by entering true position later. We analyse effect of INS sensor error on attitude in process of time and verify the performance and usefulness of the close-loop alignment algorithm which corrects attitude error from the change of initial position.

SDINS Equivalent Error Models Using the Lyapunov Transformation (Lyapunov 변환을 이용한 SDINS 등가 오차모델)

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Chan-Guk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.167-177
    • /
    • 2002
  • In Strapdown Inertial Navigation System(SDINS), error models based on previously proposed conversion equations between the attitude errors, are only valid in case the attitude errors are small. The SDINS error models have been independently studied according to the definition of the reference frame and of the attitude error. The conversion equations between the attitude errors applicable to SDINS with large attitude errors are newly derived. Lyapunov transformation matrices are also derived from the obtained results. Furthermore the general method, which is independent of the attitude error and the reference frame to derive SDINS error model, is proposed using the Lyapunov transformation.

Application of Kalman Filtering Technique to Initial Axes Erection of SDINS (SDINS의 좌표축 초기 직립에 관한 칼만 필터링 기법의 응용)

  • Choe, Geun-Guk;Lee, Man-Hyeong;Kim, Jung-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.4
    • /
    • pp.56-71
    • /
    • 1987
  • Determination of navigation variables (latitude, longitude, and altitude) near the earth's surface is termed 'Terrestrial Navigation'. The quantities that are measured inertially are the total acceleration (or the integral fo this acceleration over a fixed time interval) and the total angular rate (or the integral of this angular rate over the same time interval). These measurements when suitably compensated can be manipulated to yield the navigation variables. Hence, it is essential that the initial values of position, orientation and velocity are accurately set up during the initial alignment process. Initial alignment of gimballed inertial navigation system ( GINS) is accomplished by gyrocompassing techniques. These cannot be used, in the case of strapdown inertial navigation system(SDINS), where the inertial instruments are directly strapped down to a vehicle frame. The basic objective of this paper is the development of digital method for the determination of the initial axes erection of a SDINS from vibration and sway currupted data on the launch pad.

  • PDF